Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/343952
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Nanomechanical Sensing for Mass Flow Control in Nanowire-Based Open Nanofluidic Systems

AutorEscobar, Javier Enrique CSIC; Molina Fernández, Juan CSIC ORCID; Gil-Santos, Eduardo CSIC ORCID; Ruz Martínez, José Jaime CSIC ORCID; Malvar, Óscar CSIC ORCID; Kosaka, Priscila M. CSIC ORCID ; Tamayo de Miguel, Francisco Javier CSIC ORCID; San Paulo, Álvaro CSIC ORCID; Calleja, Montserrat CSIC ORCID
Palabras claveSemiconductor nanowires
Silicon nanowires
Nanoelectromechanical systems (NEMS)
Nanomechanical resonators
Nanofluidics
Open fluidics
Ionic liquids
Fecha de publicación30-oct-2023
EditorAmerican Chemical Society
CitaciónACS Nano 17(21): 21044–21055 (2023)
ResumenOpen nanofluidic systems, where liquids flow along the outer surface of nanoscale structures, provide otherwise unfeasible capabilities for extremely miniaturized liquid handling applications. A critical step toward fully functional applications is to obtain quantitative mass flow control. We demonstrate the application of nanomechanical sensing for this purpose by integrating voltage-driven liquid flow along nanowire open channels with mass detection based on flexural resonators. This approach is validated by assembling the nanowires with microcantilever resonators, enabling high-precision control of larger flows, and by using the nanowires as resonators themselves, allowing extremely small liquid volume handling. Both implementations are demonstrated by characterizing voltage-driven flow of ionic liquids along the surface of the nanowires. We find a voltage range where mass flow rate follows a nonlinear monotonic increase, establishing a steady flow regime for which we show mass flow control at rates from below 1 ag/s to above 100 fg/s and precise liquid handling down to the zeptoliter scale. The observed behavior of mass flow rate is consistent with a voltage-induced transition from static wetting to dynamic spreading as the mechanism underlying liquid transport along the nanowires.
Versión del editorhttps://doi.org/10.1021/acsnano.3c04020
URIhttp://hdl.handle.net/10261/343952
DOI10.1021/acsnano.3c04020
ISSN1936-0851
E-ISSN1936-086X
Aparece en las colecciones: (IMN-CNM) Artículos




Mostrar el registro completo

CORE Recommender

Page view(s)

24
checked on 03-may-2024

Download(s)

7
checked on 03-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons