Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/331282
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Regulating Oxygen Ion Transport at the Nanoscale to Enable Highly Cyclable Magneto-Ionic Control of Magnetism

AutorTan, Zhengwei; Ma, Zheng; Fuentes Rodríguez, Laura; Liedke, Maciej O.; Butterling, Maik; Attallah, Ahmed G.; Hirschmann, Eric; Wagner, Andreas; Abad, Llibertat; Casañ Pastor, Nieves CSIC ORCID; Lopeandía, Aitor; Menéndez, Enric CSIC ORCID; Sort, Jordi CSIC ORCID
Palabras claveIon diffusion
Magneto-electricity
Magneto-ionics
Transition metal oxide
Voltage control of magnetism
Fecha de publicación11-abr-2023
EditorAmerican Chemical Society
CitaciónACS Nano 17(7): 6973–6984 (2023)
ResumenMagneto-ionics refers to the control of magnetic properties of materials through voltage-driven ion motion. To generate effective electric fields, either solid or liquid electrolytes are utilized, which also serve as ion reservoirs. Thin solid electrolytes have difficulties in (i) withstanding high electric fields without electric pinholes and (ii) maintaining stable ion transport during long-term actuation. In turn, the use of liquid electrolytes can result in poor cyclability, thus limiting their applicability. Here we propose a nanoscale-engineered magneto-ionic architecture (comprising a thin solid electrolyte in contact with a liquid electrolyte) that drastically enhances cyclability while preserving sufficiently high electric fields to trigger ion motion. Specifically, we show that the insertion of a highly nanostructured (amorphous-like) Ta layer (with suitable thickness and electric resistivity) between a magneto-ionic target material (i.e., Co3O4) and the liquid electrolyte increases magneto-ionic cyclability from <30 cycles (when no Ta is inserted) to more than 800 cycles. Transmission electron microscopy together with variable energy positron annihilation spectroscopy reveals the crucial role of the generated TaOx interlayer as a solid electrolyte (i.e., ionic conductor) that improves magneto-ionic endurance by proper tuning of the types of voltage-driven structural defects. The Ta layer is very effective in trapping oxygen and hindering O2- ions from moving into the liquid electrolyte, thus keeping O2- motion mainly restricted between Co3O4 and Ta when voltage of alternating polarity is applied. We demonstrate that this approach provides a suitable strategy to boost magneto-ionics by combining the benefits of solid and liquid electrolytes in a synergetic manner.
Versión del editorhttp://doi.org/10.1021/acsnano.3c01105
URIhttp://hdl.handle.net/10261/331282
DOI10.1021/acsnano.3c01105
ISSN1936-0851
Aparece en las colecciones: (ICMAB) Artículos
(CIN2) Artículos
(IMB-CNM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Tan_ACSNano_2023_editorial.pdfArtículo principal6,9 MBAdobe PDFVista previa
Visualizar/Abrir
Tan_ACSNano_2023_suppl_editorial.pdfInformación complementaria127,27 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

1
checked on 25-abr-2024

Page view(s)

41
checked on 27-abr-2024

Download(s)

18
checked on 27-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons