Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/331282
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorTan, Zhengweies_ES
dc.contributor.authorMa, Zhenges_ES
dc.contributor.authorFuentes Rodríguez, Lauraes_ES
dc.contributor.authorLiedke, Maciej O.es_ES
dc.contributor.authorButterling, Maikes_ES
dc.contributor.authorAttallah, Ahmed G.es_ES
dc.contributor.authorHirschmann, Erices_ES
dc.contributor.authorWagner, Andreases_ES
dc.contributor.authorAbad, Llibertates_ES
dc.contributor.authorCasañ Pastor, Nieveses_ES
dc.contributor.authorLopeandía, Aitores_ES
dc.contributor.authorMenéndez, Enrices_ES
dc.contributor.authorSort, Jordies_ES
dc.date.accessioned2023-07-18T10:06:24Z-
dc.date.available2023-07-18T10:06:24Z-
dc.date.issued2023-04-11-
dc.identifier.citationACS Nano 17(7): 6973–6984 (2023)es_ES
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/10261/331282-
dc.description.abstractMagneto-ionics refers to the control of magnetic properties of materials through voltage-driven ion motion. To generate effective electric fields, either solid or liquid electrolytes are utilized, which also serve as ion reservoirs. Thin solid electrolytes have difficulties in (i) withstanding high electric fields without electric pinholes and (ii) maintaining stable ion transport during long-term actuation. In turn, the use of liquid electrolytes can result in poor cyclability, thus limiting their applicability. Here we propose a nanoscale-engineered magneto-ionic architecture (comprising a thin solid electrolyte in contact with a liquid electrolyte) that drastically enhances cyclability while preserving sufficiently high electric fields to trigger ion motion. Specifically, we show that the insertion of a highly nanostructured (amorphous-like) Ta layer (with suitable thickness and electric resistivity) between a magneto-ionic target material (i.e., Co3O4) and the liquid electrolyte increases magneto-ionic cyclability from <30 cycles (when no Ta is inserted) to more than 800 cycles. Transmission electron microscopy together with variable energy positron annihilation spectroscopy reveals the crucial role of the generated TaOx interlayer as a solid electrolyte (i.e., ionic conductor) that improves magneto-ionic endurance by proper tuning of the types of voltage-driven structural defects. The Ta layer is very effective in trapping oxygen and hindering O2- ions from moving into the liquid electrolyte, thus keeping O2- motion mainly restricted between Co3O4 and Ta when voltage of alternating polarity is applied. We demonstrate that this approach provides a suitable strategy to boost magneto-ionics by combining the benefits of solid and liquid electrolytes in a synergetic manner.es_ES
dc.description.sponsorshipFinancial support by the European Union’s Horizon 2020 Research and Innovation Programme (“BeMAGIC” European Training Network, ETN/ITN Marie Skłodowska–Curie Grant No. 861145), the European Research Council (2021-ERC-Advanced “REMINDS” Grant No. 101054687), the Spanish Government (CEX2019-000917-S y PID2021-123276OB-I00, PID2020-116844RB-C21, and PDC2021-121276-C31), and the Generalitat de Catalunya (2021-SGR-00651) is acknowledged. J.S. thanks the Spanish “Fábrica Nacional de Moneda y Timbre” (FNMT) for fruitful discussions. E.M. is a Serra Húnter Fellow. Parts of this research were carried out at ELBE at the Helmholtz-Zentrum Dresden - Rossendorf e. V., a member of the Helmholtz Association. We would like to thank the facility staff for assistance. This work was partially supported by the Impulse-und Net-working fund of the Helmholtz Association (FKZ VH-VI-442 Memriox) and the Helmholtz Energy Materials Characterization Platform (03ET7015).es_ES
dc.description.sponsorshipWith funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/861145es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/HE/101054687es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de investigación Científica y Técnica y de Innovación 2017-2020/CEX2019-000917-Ses_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/Plan Estatal de investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123276OB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116844RB-C21/ES/DESARROLLO DE SISTEMAS Y PROTOCOLOS MAGNETOELECTRICOS CON ALTA EFICIENCIA ENERGETICA PARA DISPOSITIVOS DE ALMACENAMIENTO DE DATOS, REGENERACION DE TEJIDOS Y ELECTROCATALISIS/es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/Plan Estatal de investigación Científica y Técnica y de Innovación 2021-2023/PDC2021-121276-C31es_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.subjectIon diffusiones_ES
dc.subjectMagneto-electricityes_ES
dc.subjectMagneto-ionicses_ES
dc.subjectTransition metal oxidees_ES
dc.subjectVoltage control of magnetismes_ES
dc.titleRegulating Oxygen Ion Transport at the Nanoscale to Enable Highly Cyclable Magneto-Ionic Control of Magnetismes_ES
dc.typeartículoes_ES
dc.identifier.doi10.1021/acsnano.3c01105-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://doi.org/10.1021/acsnano.3c01105es_ES
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderEuropean Research Counciles_ES
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es_ES
dc.contributor.funderAgencia Estatal de Investigación (España)es_ES
dc.contributor.funderGeneralitat de Catalunyaes_ES
dc.contributor.funderHelmholtz Associationes_ES
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100002809es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001656es_ES
dc.contributor.orcidFuentes Rodríguez, Laura [0000-0002-8799-2369]es_ES
dc.contributor.orcidLiedke, Maciej Oskar [0000-0001-7933-7295]es_ES
dc.contributor.orcidAttallah, Ahmed G. [0000-0002-7759-0315]es_ES
dc.contributor.orcidCasañ Pastor, Nieves [0000-0003-2979-4572]es_ES
dc.contributor.orcidMenéndez, Enric [0000-0003-3809-2863]es_ES
dc.contributor.orcidSort, Jordi [0000-0003-1213-3639]es_ES
dc.identifier.pmid36972329-
dc.identifier.scopus2-s2.0-85151371423-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85151371423-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.languageiso639-1en-
Aparece en las colecciones: (ICMAB) Artículos
(CIN2) Artículos
(IMB-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Tan_ACSNano_2023_editorial.pdfArtículo principal6,9 MBAdobe PDFVista previa
Visualizar/Abrir
Tan_ACSNano_2023_suppl_editorial.pdfInformación complementaria127,27 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

1
checked on 10-may-2024

Page view(s)

41
checked on 12-may-2024

Download(s)

20
checked on 12-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons