Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/61026
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Heavy metal adsorption by functionalized clays

AutorCelis, Rafael CSIC ORCID ; Hermosín, M.C. CSIC ORCID; Cornejo, J. CSIC ORCID
Fecha de publicación2000
EditorAmerican Chemical Society
CitaciónEnvironmental Science and Technology 34(21): 4593- 4599 (2000)
ResumenOrganic ligands containing the thiol (-SH) metal-chelating functionality were either grafted to the external surface silanol groups of sepiolite or introduced in the interlayers of montmorillonite, and the resulting functionalized clays were characterized and assayed as adsorbents for Hg(II), Pb(II), and Zn(II) ions from solution. Sepiolite was functionalized by covalently grafting 3-mercapto-pro-pyltrimethoxysilane (MPS) to the surface ≡Si-OH groups of the clay, whereas montmorillonite was functionalized by replacement of the interlayer inorganic cation (Na+) by 2-mercaptoethylammonium (MEA) cations. These clay-organic ligand systems were selected to minimize the congestion of the internal porosity of the clays, which has recently been shown to be the main obstacle to heavy metal adsorption by functionalized clays. Infrared spectroscopy and elemental analyses demonstrated the presence of the organic ligands in the modified clays. X-ray diffraction analysis indicated the organic cations (MEA) occupied the interlayers of montmorillonite. N2 specific surface area measurements suggested that much of the surface area of montmorillonite and sepiolite remained accessible upon functionalization and that the organic ligand kept the montmorillonite interlayers open. The functionalized clays adsorbed most of the Hg(II) ions present in solution up to saturation and were also good adsorbents of Pb(II) at low metal ion concentrations (i.e., <0.02 mM). They were, however, less effective toward Pb(II) and Zn(II) at high metal ion concentrations. The presence of NaN03 or Ca(N03)2 as background electrolytes at concentrations ranging from 0.001 to 0.1 M did not alter the great adsorption capacity of functionalized sepiolite for Hg(II). The results show that clay functionalization can be optimized by matching clay structure with a suitable reactive (i.e., fibrous clay with a graftable ligand or expandable clay with an exchangeable cationic ligand) and minimizing the gallery volume taken up by the organic ligand, thus improving the performance of the functionalized clay as adsorbent of heavy metals from solution.
URIhttp://hdl.handle.net/10261/61026
DOI10.1021/es000013c
Identificadoresdoi: 10.1021/es000013c
issn: 0013-936X
e-issn: 1520-5851
Aparece en las colecciones: (IRNAS) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

371
checked on 25-abr-2024

WEB OF SCIENCETM
Citations

337
checked on 27-feb-2024

Page view(s)

433
checked on 12-may-2024

Download(s)

167
checked on 12-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.