Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/345923
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Full-field predictions of ice dynamic recrystallisation under simple shear conditions

AutorLlorens, Maria-Gema CSIC ORCID ; Griera, Albert; Bons, Paul Dirk; Lebensohn, Ricardo A.; Evans, Lynn A.; Jansen, Daniela; Weikusat, Ilka
Palabras claveDynamic recrystallisation
Ice microstructure
Strain localisation
Viscoplastic anisotropy
Fecha de publicación2016
EditorElsevier BV
CitaciónEarth and Planetary Sciences Letters 450: 233- 242 (2016)
ResumenUnderstanding the flow of ice on the microstructural scale is essential for improving our knowledge of large-scale ice dynamics, and thus our ability to predict future changes of ice sheets. Polar ice behaves anisotropically during flow, which can lead to strain localisation. In order to study how dynamic recrystallisation affects to strain localisation in deep levels of polar ice sheets, we present a series of numerical simulations of ice polycrystals deformed under simple-shear conditions. The models explicitly simulate the evolution of microstructures using a full-field approach, based on the coupling of a viscoplastic deformation code (VPFFT) with dynamic recrystallisation codes. The simulations provide new insights into the distribution of stress, strain rate and lattice orientation fields with progressive strain, up to a shear strain of three. Our simulations show how the recrystallisation processes have a strong influence on the resulting microstructure (grain size and shape), while the development of lattice preferred orientations (LPO) appears to be less affected. Activation of non-basal slip systems is enhanced by recrystallisation and induces a strain hardening behaviour up to the onset of strain localisation and strain weakening behaviour. Simulations demonstrate that the strong intrinsic anisotropy of ice crystals is transferred to the polycrystalline scale and results in the development of strain localisation bands than can be masked by grain boundary migration. Therefore, the finite-strain history is non-directly reflected by the final microstructure. Masked strain localisation can be recognised in ice cores, such as the EDML, from the presence of stepped boundaries, microshear and grains with zig-zag geometries.
Versión del editorhttp://dx.doi.org/10.1016/j.epsl.2016.06.045
URIhttp://hdl.handle.net/10261/345923
Identificadoresdoi: 10.1016/j.epsl.2016.06.045
issn: 0012-821X
Aparece en las colecciones: (Geo3Bcn) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
967759.pdf1,87 MBUnknownVisualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

16
checked on 02-may-2024

Download(s)

9
checked on 02-may-2024

Google ScholarTM

Check


Este item está licenciado bajo una Licencia Creative Commons Creative Commons