Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/342688
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorMartínez Berges, Isabeles_ES
dc.contributor.authorRomano, M. C.es_ES
dc.contributor.authorFernández García, José Ramónes_ES
dc.contributor.authorChiesa, Paoloes_ES
dc.contributor.authorMurillo Villuendas, Ramónes_ES
dc.contributor.authorAbanades García, Juan Carloses_ES
dc.date.accessioned2024-01-17T18:50:05Z-
dc.date.available2024-01-17T18:50:05Z-
dc.date.issued2013-10-17-
dc.identifierdoi: 10.1016/j.apenergy.2013.09.026-
dc.identifierissn: 0306-2619-
dc.identifiere-issn: 1872-9118-
dc.identifier.citationApplied Energy 114: 192-208 (2014)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/342688-
dc.description8 figures, 4 tables.-- © 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.description.abstractA detailed and comprehensive design of a H2 production plant based on a novel Ca/Cu chemical looping process is presented in this work. This H2 production process is based on the sorption-enhanced reforming concept using natural gas together with a CaO/CaCO3 chemical loop. A second Cu/CuO loop is incorporated to supply energy for the calcination of the CaCO3 via the reduction of CuO with a fuel gas. A comprehensive energy integration description of the different gas streams available in the plant is provided to allow a thermodynamic assessment of the process and to highlight its advantages and drawbacks. Hydrogen equivalent efficiencies of up to 77% are feasible with this novel Ca/Cu looping process, using an active reforming catalyst based on Pt, high oxidation temperatures and moderate gas velocities in the fixed bed system, which are around 6% points above the efficiency of a reference H2 production plant based on conventional steam reforming including CO2 capture with MDEA. Non-converted carbon compounds in the reforming stage are removed as CO2 in the calcination stage of the Ca/Cu looping process, which will be compressed and sent for storage. Carbon capture efficiencies of around 94% can be obtained with this Ca/Cu looping process, which are significantly higher than those obtained in the reference plant that uses MDEA absorption (around 85%). Additional advantages, such as its compact design and the use of cheaper materials compared to other commercial processes for H2 production with CO2 capture, confirm the potential of the Ca/Cu looping process as a pre-combustion CO2 capture technology for H2 production.es_ES
dc.description.sponsorshipThis work is supported by the R+D Spanish National Program from the Spanish Ministry of Economy and Competitiveness under Project ENE2012-37936-C02-01 and from CSIC 201280E017. Financial support for the PhD of I. Martínez is provided by the FPU programme of the Spanish Ministry of Education (AP2009- 3575), and funding to carry out this work has been provided by the Europe programme of the CAI.es_ES
dc.languageeng-
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO//ENE2012-37936-C02-01es_ES
dc.relation.isversionofPostprintes_ES
dc.rightsopenAccesses_ES
dc.subjectCa/Cu looping processes_ES
dc.subjectCO2 capturees_ES
dc.subjectPressurized H2 productiones_ES
dc.titleProcess design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loopes_ES
dc.typeartículoes_ES
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.apenergy.2013.09.026es_ES
dc.date.updated2024-01-17T18:50:05Z-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.eses_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.contributor.funderConsejo Superior de Investigaciones Científicas (España)es_ES
dc.contributor.funderMinisterio de Educación (España)es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.relation.csices_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003339es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.contributor.orcidMartínez Berges, Isabel [0000-0002-2364-463X]es_ES
dc.contributor.orcidRomano, M. C. [0000-0003-0213-2245]es_ES
dc.contributor.orcidFernández García, José Ramón [0000-0001-9801-7043]es_ES
dc.contributor.orcidChiesa, Paolo [0000-0003-2006-0230]es_ES
dc.contributor.orcidMurillo Villuendas, Ramón [0000-0002-0299-506X]es_ES
dc.contributor.orcidAbanades García, Juan Carlos [0000-0003-1711-6993]es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeartículo-
Aparece en las colecciones: (ICB) Artículos
(INCAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Process_design_H2_prod._plant_Romano.pdf1,43 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

30
checked on 18-may-2024

Download(s)

29
checked on 18-may-2024

Google ScholarTM

Check


Este item está licenciado bajo una Licencia Creative Commons Creative Commons