Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/30561
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorCortés, Juan-
dc.contributor.authorSimeon, Thierry-
dc.contributor.authorRuiz de Angulo, Vicente-
dc.contributor.authorGuieysse, David-
dc.contributor.authorRemaud-Simeon, Magalli-
dc.date.accessioned2010-12-17T13:24:43Z-
dc.date.available2010-12-17T13:24:43Z-
dc.date.issued2005-
dc.identifier.citationBioinformatics, 21: 116-125, 2005.-
dc.identifier.issn1367-4803-
dc.identifier.urihttp://hdl.handle.net/10261/30561-
dc.description.abstractMotivation: Motion is inherent in molecular interactions. Molecular flexibility must be taken into account in order to develop accurate computational techniques for predicting interactions. Energy-based methods currently used in molecular modeling (i.e. molecular dynamics, Monte Carlo algorithms) are, in practice, only able to compute local motions while accounting for molecular flexibility. However, large-amplitude motions often occur in biological processes. We investigate the application of geometric path planning algorithms to compute such large motions in flexible molecular models. Our purpose is to exploit the efficacy of a geometric conformational search as a filtering stage before subsequent energy refinements. Results: In this paper two kinds of large-amplitude motion are treated: protein loop conformational changes (involving protein backbone flexibility) and ligand trajectories to deep active sites in proteins (involving ligand and protein side-chain flexibility). First studies performed using our two-stage approach (geometric search followed by energy refinements) show that, compared to classical molecular modeling methods, quite similar results can be obtained with a performance gain of several orders of magnitude. Furthermore, our results also indicate that the geometric stage can provide highly valuable information to biologists. Availability: The algorithms have been implemented in the general-purpose motion planning software Move3D, developed at LAAS-CNRS. We are currently working on an optimized stand-alone library that will be available to the scientific community.-
dc.language.isoeng-
dc.publisherOxford University Press-
dc.rightsopenAccess-
dc.subjectMolecular conformations-
dc.subjectPath planning-
dc.subjectRobotics-
dc.subjectMolecular motion-
dc.subjectGeometric constraints-
dc.subjectAutomation-
dc.titleA path planning approach for computing large-amplitude motions of flexible molecules-
dc.typeartículo-
dc.identifier.doi10.1093/bioinformatics/bti1017-
dc.description.peerreviewedPeer Reviewed-
dc.relation.publisherversionhttp://dx.doi.org/10.1093/bioinformatics/bti1017-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.openairetypeartículo-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
doc1.pdf1,37 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

107
checked on 24-abr-2024

WEB OF SCIENCETM
Citations

87
checked on 27-feb-2024

Page view(s)

361
checked on 22-abr-2024

Download(s)

253
checked on 22-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.