Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/203070
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorRowan-Robinson, Richard M.-
dc.contributor.authorMelander, Emil-
dc.contributor.authorChioar, Ioan-Augustin-
dc.contributor.authorCaballero, Blanca-
dc.contributor.authorGarcía-Martín, Antonio-
dc.contributor.authorPapaioannou, E. Th.-
dc.contributor.authorKapaklis, Vassilios-
dc.date.accessioned2020-03-06T12:44:53Z-
dc.date.available2020-03-06T12:44:53Z-
dc.date.issued2019-02-
dc.identifierdoi: 10.1063/1.5079713-
dc.identifiere-issn: 2158-3226-
dc.identifier.citationAIP Advances 9: 025317 (2019)-
dc.identifier.urihttp://hdl.handle.net/10261/203070-
dc.description.abstractLarge surface plasmon polariton assisted enhancement of the magneto-optical activity has been observed in the past, through spectral measurements of the polar Kerr rotation in Co hexagonal antidot arrays. Here, we report a strong thickness dependence, which is unexpected given that the Kerr effect is considered a surface sensitive phenomena. The maximum Kerr rotation was found to be -0.66 degrees for a 100 nm thick sample. This thickness is far above the typical optical penetration depth of a continuous Co film, demonstrating that in the presence of plasmons the critical lengthscales are dramatically altered, and in this case extended. We therefore establish that the plasmon enhanced Kerr effect does not only depend on the in-plane structuring of the sample, but also on the out-of-plane geometrical parameters, which is an important consideration in magnetoplasmonic device design.-
dc.description.sponsorshipThe authors acknowledge support from the Knut and Alice Wallenberg Foundation project “Harnessing light and spins through plasmons at the nanoscale” (2015.0060), the Swedish Research Council and the Swedish Foundation for International Cooperation in Research and Higher Education. This work is part of a project which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 737093. E. Th. P acknowledges the Deutsche Forschungsgemeinschaft (DFG) through the collaborative research center SFB TRR 173: SPIN+X Project B07 and the Carl Zeiss Foundation. A.G.-M. acknowledges funding from the Spanish Ministry of Economy and Competitiveness through grant MAT2014-58860-P, and from the Comunidad de Madrid through Contract No. S2013/MIT-2740.-
dc.languageeng-
dc.publisherAmerican Institute of Physics-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/737093-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2014-58860-P-
dc.relationS2013/MIT-2740/PHAMA 2.0-CM-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleThickness dependent enhancement of the polar Kerr rotation in Co magnetoplasmonic nanostructures-
dc.typeartículo-
dc.identifier.doi10.1063/1.5079713-
dc.relation.publisherversionhttp://dx.doi.org/10.1063/1.5079713-
dc.date.updated2020-03-06T12:44:53Z-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/-
dc.contributor.funderKnut and Alice Wallenberg Foundation-
dc.contributor.funderSwedish Research Council-
dc.contributor.funderSwedish Foundation for International Cooperation in Research and Higher Education-
dc.contributor.funderEuropean Commission-
dc.contributor.funderGerman Research Foundation-
dc.contributor.funderCarl Zeiss Foundation-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderComunidad de Madrid-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/100012818es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100007569es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004063es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001728es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001659es_ES
dc.contributor.orcidPapaioannou, E. Th. [0000-0002-9822-2343]-
dc.contributor.orcidKapaklis, Vassilios; [0000-0002-6105-1659]-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Aparece en las colecciones: (IMN-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Thickness dependent enhancement.pdf1,35 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

6
checked on 04-may-2024

WEB OF SCIENCETM
Citations

5
checked on 24-feb-2024

Page view(s)

185
checked on 11-may-2024

Download(s)

130
checked on 11-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons