Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/171201
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorCui, W.-
dc.contributor.authorSan-Martín, David-
dc.contributor.authorRivera-Díaz del Castillo, P.E.J.-
dc.date.accessioned2018-10-18T07:59:04Z-
dc.date.available2018-10-18T07:59:04Z-
dc.date.issued2017-
dc.identifierdoi: 10.1016/j.matdes.2017.08.013-
dc.identifierissn: 1873-4197-
dc.identifier.citationMaterials and Design 133: 464-475 (2017)-
dc.identifier.urihttp://hdl.handle.net/10261/171201-
dc.description.abstractThe present work develops a numerical approach combining thermodynamic and kinetic simulations to investigate the austenitisation process on spheroidised bearing steel. The approach incorporates the dissolution of spheroidised cementite present prior to austenitisation and the influence of austenitisation temperature. It allows predictions including the chemical driving force of austenite formation, the evolution of phase constituents and their chemical compositions during austenitisation, as well as an assessment on the austenite stability upon quenching. The calculated results further allow to predict the hardness of the produced martensitic steels. The model predictions are validated against experimental data in two commercial bearing steels with six austenitisation processes. Good agreement between the experimental results and numerical predictions is obtained on the steel microstructure, austenite stability and material hardness. In addition, comparison of the two steels show that 100Cr6 requires to be austenitised at temperatures 10 °C higher than 100CrMnSi6-4, to achieve the same driving force for austenite formation, and 20 °C higher to achieve identical austenite stability upon quenching. The method can be adopted beyond bearing steels to design austenitisation processing schedules.-
dc.description.sponsorshipThis research is supported by SKF Engineering & Research Centre and financed by SKF AB. Mr. Javier Vara from the Phase Transformations Laboratory in CENIM-CSIC is greatly acknowledged for the experimental support with high resolution dilatometry experiments.-
dc.publisherElsevier-
dc.relation.isversionofPublisher's version-
dc.rightsclosedAccess-
dc.subjectAustenite-
dc.subjectMicrostructure design-
dc.subjectSteel with spheroidal cementite-
dc.subjectAustenitization-
dc.subjectTransformation kinetics-
dc.subjectHardness-
dc.titleTowards efficient microstructural design and hardness prediction of bearing steels — An integrated experimental and numerical study-
dc.typeartículo-
dc.identifier.doi10.1016/j.matdes.2017.08.013-
dc.date.updated2018-10-18T07:59:04Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderSvenska Kullagerfabriken-
dc.relation.csic-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeartículo-
item.fulltextNo Fulltext-
Aparece en las colecciones: (CENIM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

7
checked on 03-may-2024

WEB OF SCIENCETM
Citations

7
checked on 29-feb-2024

Page view(s)

206
checked on 06-may-2024

Download(s)

87
checked on 06-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.