English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/9329
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorAnglada Rull, Josep M.-
dc.contributor.authorOlivella, Santiago-
dc.contributor.authorSol, Albert-
dc.identifier.citationThe Journal of Physical Chemistry 111(9): 1695-1704 (2007)en_US
dc.description10 pages, 8 figures.-- PMID: 17290977 [PubMed].en_US
dc.descriptionSupporting information (cartesian coordinates of the CASSCF/6-311+G(3d,2p)-optimized geometries, tables S1-S2, figures S1-S4, 9 pages) available at: http://pubs.acs.org/doi/suppl/10.1021/jp066823d/suppl_file/jp066823dsi20070104_064851.pdf-
dc.description.abstractThe singlet and triplet potential energy surfaces (PESs) for the gas-phase bimolecular self-reaction of HOO·, a key reaction in atmospheric environments, have been investigated by means of quantum-mechanical electronic structure methods (CASSCF and CASPT2). All the reaction pathways on both PESs consist of a first step involving the barrierless formation of a prereactive doubly hydrogen-bonded complex, which is a diradical species lying about 8 kcal/mol below the energy of the reactants at 0 K. The lowest energy reaction pathway on both PESs is the degenerate double hydrogen exchange between the HOO· moieties of the prereactive complex via a double proton transfer mechanism involving an energy barrier of only 1.1 kcal/mol for the singlet and 3.3 kcal/mol for the triplet at 0 K. The single H-atom transfer between the two HOO· moieties of the prereactive complex (yielding HOOH + O2) through a pathway keeping a planar arrangement of the six atoms involves a conical intersection between either two singlet or two triplet states of A´ and A´´ symmetries. Thus, the lowest energy reaction pathway occurs via a nonplanar cisoid transition structure with an energy barrier of 5.8 kcal/mol for the triplet and 17.5 kcal/mol for the singlet at 0 K. The simple addition between the terminal oxygen atoms of the two HOO· moieties of the prereactive complex, leading to the straight chain H2O4 intermediate on the singlet PES, involves an energy barrier of 7.3 kcal/mol at 0 K. Because the decomposition of such an intermediate into HOOH + O2 entails an energy barrier of 45.2 kcal/mol at 0 K, it is concluded that the single H-atom transfer on the triplet PES is the dominant pathway leading to HOOH + O2. Finally, the strong negative temperature dependence of the rate constant observed for this reaction is attributed to the reversible formation of the prereactive complex in the entrance channel rather than to a short-lived tetraoxide intermediate.en_US
dc.description.sponsorshipThis research was supported by the Spanish MEC (Grants CTQ2005-07790 and UNBA05-33-001). Additional support came from the Catalonian AGAUR (Grants 2005SGR00111 and 2005PEIR0051/69). The larger calculations described in this work were performed at the Centre de Supercomputació de Catalunya (CESCA).en_US
dc.format.extent162 bytes-
dc.publisherAmerican Chemical Societyen_US
dc.subjectAtmospherical chemistryen_US
dc.subjectTheorical chemistryen_US
dc.subjectHidroperoxil radicalen_US
dc.subjectGas-phase chemistryen_US
dc.titleNew Insight into the Gas-Phase Bimolecular Self-Reaction of the HOO Radicalen_US
dc.description.peerreviewedPeer revieweden_US
Appears in Collections:(IQAC) Artículos
Files in This Item:
There are no files associated with this item.
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.