Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/311761
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Microbial communities in terrestrial surface soils are not widely limited by carbon

AutorCui, Yongxing; Peng, Shushi; Delgado-Baquerizo, Manuel CSIC ORCID ; Rillig, Matthias C.; Terrer, C.; Zhu, Biao; Jing, Xin; Chen, Ji; Li, Jinquan; Feng, Jiao; He, Yue; Fang, Linchuan; Moorhead, Daryl L.; Sinsabaugh, Robert L.; Peñuelas, Josep CSIC ORCID
Palabras claveDecomposer community
Ecological stoichiometry
Global climate change
Heterotrophic respiration
Resource limitations
Soil carbon cycling
Soil-climate feedback
Fecha de publicación5-jun-2023
EditorJohn Wiley & Sons
CitaciónGlobal Change Biology (2023) https://doi.org/10.1111/gcb.16765
ResumenMicrobial communities in soils are generally considered to be limited by carbon (C), which could be a crucial control for basic soil functions and responses of microbial heterotrophic metabolism to climate change. However, global soil microbial C limitation (MCL) has rarely been estimated and is poorly understood. Here, we predicted MCL, defined as limited availability of substrate C relative to nitrogen and/or phosphorus to meet microbial metabolic requirements, based on the thresholds of extracellular enzyme activity across 847 sites (2476 observations) representing global natural ecosystems. Results showed that only about 22% of global sites in terrestrial surface soils show relative C limitation in microbial community. This finding challenges the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. The limited geographic extent of C limitation in our study was mainly attributed to plant litter, rather than soil organic matter that has been processed by microbes, serving as the dominant C source for microbial acquisition. We also identified a significant latitudinal pattern of predicted MCL with larger C limitation at mid- to high latitudes, whereas this limitation was generally absent in the tropics. Moreover, MCL significantly constrained the rates of soil heterotrophic respiration, suggesting a potentially larger relative increase in respiration at mid- to high latitudes than low latitudes, if climate change increases primary productivity that alleviates MCL at higher latitudes. Our study provides the first global estimates of MCL, advancing our understanding of terrestrial C cycling and microbial metabolic feedback under global climate change.
Descripción18 páginas.- 5 figuras.- referencias.- Additional supporting information can be found online in the Supporting Information section at the end of this article https://doi.org/10.1111/gcb.16765
Versión del editorhttp://dx.doi.org/10.1111/gcb.16765
URIhttp://hdl.handle.net/10261/311761
DOI10.1111/gcb.16765
E-ISSN1365-2486
Aparece en las colecciones: (IRNAS) Artículos
(CREAF) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender
sdgo:Goal

SCOPUSTM   
Citations

7
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

5
checked on 27-feb-2024

Page view(s)

106
checked on 01-may-2024

Download(s)

11
checked on 01-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.