Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/281537
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Proteomics coupled with in vitro model to study the early crosstalk occurring between newly excysted juveniles of Fasciola hepatica and host intestinal cells

AutorBecerro Recio, David CSIC ORCID; Serrat, Judit CSIC ORCID; López-García, Marta CSIC ORCID; Sotillo, Javier; Simón Marta, Fernando CSIC; González Miguel, Javier CSIC ORCID ; Siles Lucas, Mar CSIC ORCID
Palabras claveFasciola hepatica
Proteomics
Protein interactions
Host-pathogen interactions
Fecha de publicación2022
EditorPublic Library of Science
CitaciónPLoS Neglected Tropical Diseases 16 (10): 0010811 (2022)
ResumenFasciolosis caused by the trematode Fasciola hepatica is a zoonotic neglected disease affecting animals and humans worldwide. Infection occurs upon ingestion of aquatic plants or water contaminated with metacercariae. These release the newly excysted juveniles (FhNEJ) in the host duodenum, where they establish contact with the epithelium and cross the intestinal barrier to reach the peritoneum within 2-3 h after infection. Juveniles crawl up the peritoneum towards the liver, and migrate through the hepatic tissue before reaching their definitive location inside the major biliary ducts, where they mature into adult worms. Fasciolosis is treated with triclabendazole, although resistant isolates of the parasite are increasingly being reported. This, together with the limited efficacy of the assayed vaccines against this infection, poses fasciolosis as a veterinary and human health problem of growing concern. In this context, the study of early host-parasite interactions is of paramount importance for the definition of new targets for the treatment and prevention of fasciolosis. Here, we develop a new in vitro model that replicates the first interaction between FhNEJ and mouse primary small intestinal epithelial cells (MPSIEC). FhNEJ and MPSIEC were co-incubated for 3 h and protein extracts (tegument and soma of FhNEJ and membrane and cytosol of MPSIEC) were subjected to quantitative SWATH-MS proteomics and compared to respective controls (MPSIEC and FhNEJ left alone for 3h in culture medium) to evaluate protein expression changes in both the parasite and the host. Results show that the interaction between FhNEJ and MPSIEC triggers a rapid protein expression change of FhNEJ in response to the host epithelial barrier, including cathepsins L3 and L4 and several immunoregulatory proteins. Regarding MPSIEC, stimulation with FhNEJ results in alterations in the protein profile related to immunomodulation and cell-cell interactions, together with a drastic reduction in the expression of proteins linked with ribosome function. The molecules identified in this model of early host-parasite interactions could help define new tools against fasciolosis.
Descripción24 páginas, 9 figuras
Versión del editorhttp://dx.doi.org/10.1371/journal.pntd.0010811
URIhttp://hdl.handle.net/10261/281537
DOI10.1371/journal.pntd.0010811
ISSN1935-2727
E-ISSN1935-2735
Aparece en las colecciones: (IRNASA) Artículos




Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

4
checked on 17-abr-2024

SCOPUSTM   
Citations

5
checked on 17-may-2024

WEB OF SCIENCETM
Citations

5
checked on 26-feb-2024

Page view(s)

48
checked on 22-may-2024

Download(s)

36
checked on 22-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons