Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/263150
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorSchmidt, Hans-Peter-
dc.contributor.authorKammann, Claudia-
dc.contributor.authorHagemann, Nikolas-
dc.contributor.authorLeifeld, Jens-
dc.contributor.authorBucheli, Thomas D-
dc.contributor.authorSánchez-Monedero, Miguel Ángel-
dc.contributor.authorCayuela, María Luz-
dc.date.accessioned2022-03-07T12:50:25Z-
dc.date.available2022-03-07T12:50:25Z-
dc.date.issued2021-09-01-
dc.identifierdoi: 10.1111/gcbb.12889-
dc.identifierissn: 1757-1707-
dc.identifier.citationGlobal Change Biology Bioenergy 13(11): 1708-1730 (2021)-
dc.identifier.urihttp://hdl.handle.net/10261/263150-
dc.description.abstractBiochar is obtained by pyrolyzing biomass and is, by definition, applied in a way that avoids its rapid oxidation to CO. Its use in agriculture includes animal feeding, manure treatment (e.g. as additive for bedding, composting, storage or anaerobic digestion), fertilizer component or direct soil application. Because the feedstock carbon is photosynthetically fixed CO from the atmosphere, producing and applying biochar is essentially a carbon dioxide removal (CDR) technology, which has a high-technology readiness level. However, for swift implementation of pyrogenic carbon capture and storage (PyCCS), biochar use in agriculture needs to deliver co-benefits, for example, by improving crop yields and ecosystem services and/or by improving climate change resilience by ameliorating key soil properties. Agronomic biochar research is a rapidly evolving field of research moving from less than 100 publications in 2010 to more than 15,000 by the end of 2020. Here, we summarize 26 rigorously selected meta-analyses published since 2016 that investigated a multitude of soil properties and agronomic performance parameters impacted by biochar application, for example, effects on yield, root biomass, water use efficiency, microbial activity, soil organic carbon and greenhouse gas emissions. All 26 meta-analyses show compelling evidence of the overall beneficial effect of biochar for all investigated agronomic parameters. One of the remaining challenges is the standardization of basic biochar analysis, still lacking in many studies. Incomplete biochar characterization increases uncertainty because adverse effects of individual studies included in the meta-analyses might be related to low-quality biochars, which would not qualify for certification and subsequent use (e.g. high content of contaminants, high salinity, incomplete pyrolysis, etc.). In summary, our systematic review suggests that biochar use in agriculture has the potential to combine CDR with significant agronomic and/or environmental co-benefits.-
dc.description.sponsorshipGerman Federal Ministry of Education and Research; German Federal Ministry for Economy and Energy, Grant/ Award Number: ZF4203804SB8; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: IZ08Zo_177346; Spanish Ministry of Science, Innovation and Universities, Grant/Award Number: RTI2018- 099417-B-I00-
dc.languageeng-
dc.publisherJohn Wiley & Sons-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099417-B-I00/ES/OPTIMIZACION DE LAS PROPIEDADES REDOX DE BIOCHARS PARA DISMINUIR LAS EMISIONES DE GASES DE EFECTO INVERNADERO Y FAVORECER LA DEGRADACION DE CONTAMINANTES EMERGENTES/-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.subjectAnthropogenic dark earth (ADE)-
dc.subjectBiochar-based fertilization-
dc.subjectClimate change adaptation-
dc.subjectGreenhouse gas emissions-
dc.subjectNegative emission technology (NET)-
dc.subjectPyrogenic carbon capture and storage (PyCCS)-
dc.subjectSoil organic carbon-
dc.titleBiochar in agriculture – A systematic review of 26 global meta-analyses-
dc.typeartículo de revisión-
dc.identifier.doi10.1111/gcbb.12889-
dc.relation.publisherversionhttp://dx.doi.org/10.1111/gcbb.12889-
dc.date.updated2022-03-07T12:50:25Z-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/-
dc.contributor.funderFederal Ministry of Education and Research (Germany)-
dc.contributor.funderFederal Ministry for Economics Affairs and Energy (Germany)-
dc.contributor.funderSwiss National Science Foundation-
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)-
dc.contributor.funderAgencia Estatal de Investigación (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100002347es_ES
dc.subject.urihttp://metadata.un.org/sdg/13es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bces_ES
dc.subject.sdgTake urgent action to combat climate change and its impactses_ES
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeartículo de revisión-
Aparece en las colecciones: (CEBAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Schmidt2021GCBBioenergy.pdf532,99 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender
sdgo:Goal

Page view(s)

54
checked on 22-may-2024

Download(s)

178
checked on 22-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons