Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/248096
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Responses of Southern Ocean Seafloor Habitats and Communities to Global and Local Drivers of Change

AutorBrasier, Madeleine J.; Barnes, David K.A.; Bax, Narissa; Brandt, Angelika; Christianson, Anne B.; Constable, Andrew John; Downey, Rachel; Figuerola, Blanca CSIC ORCID ; Griffiths, Huw J.; Gutt, Julian; Lockhart, Susanne; Morley, Simon A.; Post, Alexandra L.; Van de Putte, Anton; Saeedi, Hanieh; Stark, Jonathan S.; Sumner, Michael; Waller, Catherine Louise
Palabras claveBenthos
Antarctica
Southern Ocean
Marine protected areas
Vulnerable marine ecosystems
Fishing
Fecha de publicaciónmay-2021
EditorFrontiers Media
CitaciónFrontiers in Marine Science 8: 622721 (2021)
ResumenKnowledge of life on the Southern Ocean seafloor has substantially grown since the beginning of this century with increasing ship-based surveys and regular monitoring sites, new technologies and greatly enhanced data sharing. However, seafloor habitats and their communities exhibit high spatial variability and heterogeneity that challenges the way in which we assess the state of the Southern Ocean benthos on larger scales. The Antarctic shelf is rich in diversity compared with deeper water areas, important for storing carbon (“blue carbon”) and provides habitat for commercial fish species. In this paper, we focus on the seafloor habitats of the Antarctic shelf, which are vulnerable to drivers of change including increasing ocean temperatures, iceberg scour, sea ice melt, ocean acidification, fishing pressures, pollution and non-indigenous species. Some of the most vulnerable areas include the West Antarctic Peninsula, which is experiencing rapid regional warming and increased iceberg-scouring, subantarctic islands and tourist destinations where human activities and environmental conditions increase the potential for the establishment of non-indigenous species and active fishing areas around South Georgia, Heard and MacDonald Islands. Vulnerable species include those in areas of regional warming with low thermal tolerance, calcifying species susceptible to increasing ocean acidity as well as slow-growing habitat-forming species that can be damaged by fishing gears e.g., sponges, bryozoan, and coral species. Management regimes can protect seafloor habitats and key species from fishing activities; some areas will need more protection than others, accounting for specific traits that make species vulnerable, slow growing and long-lived species, restricted locations with optimum physiological conditions and available food, and restricted distributions of rare species. Ecosystem-based management practices and long-term, highly protected areas may be the most effective tools in the preservation of vulnerable seafloor habitats. Here, we focus on outlining seafloor responses to drivers of change observed to date and projections for the future. We discuss the need for action to preserve seafloor habitats under climate change, fishing pressures and other anthropogenic impacts
DescripciónThis work is a core contribution to the first Marine Ecosystem Assessment for the Southern Ocean (MEASO) of IMBeR’s program ICED.-- 30 pages, 8 figures, 2 tables, supplementary material https://www.frontiersin.org/articles/10.3389/fmars.2021.622721/full#supplementary-material
Versión del editorhttps://doi.org/10.3389/fmars.2021.622721
URIhttp://hdl.handle.net/10261/248096
DOI10.3389/fmars.2021.622721
ISSN2296-7745
Aparece en las colecciones: (ICM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Brasier_et_al_2021.pdf5,24 MBAdobe PDFVista previa
Visualizar/Abrir
Brasier_et_al_2021_suppl.docx24,24 kBMicrosoft Word XMLVisualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

24
checked on 30-mar-2024

WEB OF SCIENCETM
Citations

21
checked on 27-feb-2024

Page view(s)

67
checked on 27-abr-2024

Download(s)

122
checked on 27-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons