Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/242387
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Numerical and Analytical Modeling of Flow Partitioning in Partially Saturated Fracture Networks

AutorKordilla, Jannes; Dentz, Marco CSIC ORCID ; Tartakovsky, Alexandre M.
Palabras claveInfiltration
Fractured-porous media
Recharge
Preferential flow
Smoothed particle hydrodynamics
Vadose zone
Fecha de publicación11-feb-2021
EditorWiley-Blackwell
CitaciónWater Resources Research 57 (4): e2020WR028775 (2021)
ResumenInfiltration processes in fractured-porous media remain a crucial, yet not very well understood component of recharge and vulnerability assessment. Under partially saturated condition flows in fractures, percolating fracture networks and fault zones contribute to the fastest spectrum of infiltration velocities via preferential pathways. Specifically, the partitioning dynamics at fracture intersections determine the magnitude of flow fragmentation into vertical and horizontal components, hence the bulk flow velocity and dispersion of fracture networks. Here we derive an approximate analytical solution for the partitioning process and validate it using smoothed particle hydrodynamics simulations. The transfer function is conceptually based on simulation results and laboratory experiments carried out in previous works. It allows efficient flow simulation through fracture networks with simple cubic structures and an arbitrary number of fractures and aperture sizes via linear response theory and convolution of a given input signal. We derive a nondimensional bulk flow velocity (urn:x-wiley:00431397:media:wrcr25145:wrcr25145-math-0001) and dispersion coefficient (urn:x-wiley:00431397:media:wrcr25145:wrcr25145-math-0002) to characterize fracture networks in terms of dimensionless horizontal and vertical time scales τm and τ0. The dispersion coefficient strongly depends on the horizontal time scale and converges toward a constant value of 0.08 within reasonable fluid and geometrical parameter ranges, while the nondimensional velocity exhibits a characteristic urn:x-wiley:00431397:media:wrcr25145:wrcr25145-math-0003 scaling. Given that hydraulic information is often only available at limited places within (fractured-porous) aquifer systems (boreholes or springs), our study intends to provide an analytical concept to potentially reconstruct internal fracture network geometries from external boundary information, such as the dispersive properties of discharge (groundwater level fluctuations).
Versión del editorhttps://doi.org/10.1029/2020WR028775
URIhttp://hdl.handle.net/10261/242387
DOI10.1029/2020WR028775
Aparece en las colecciones: (IDAEA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
2020WR028775.pdfArtículo principal1,81 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

6
checked on 03-abr-2024

WEB OF SCIENCETM
Citations

5
checked on 14-feb-2024

Page view(s)

80
checked on 27-abr-2024

Download(s)

99
checked on 27-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.