
1.  Introduction
Estimation of infiltration and recharge remains one of the most important challenges in modern hydroge-
ology (Scanlon & Cook, 2002; Scanlon et al., 2006) and is directly related to important topics such as inte-
grated water resources management (Alkhatib et al., 2019; Engelhardt et al., 2013), safety of nuclear waste 
repositories (Bodvarsson et al., 1997; Tsang et al., 2015), and storage, release and degradation of nitrate and 
other agrochemical products (Ascott et al., 2016, 2017; Kurtzman et al., 2013; Wang et al., 2013). In contrast 
to the long-prevailing opinion that fractures (or, generally speaking, highly permeable heterogeneities em-
bedded in porous media) do not transmit water under nonequilibrium conditions due to the strong capillary 
forces in the adjacent matrix (Singhal & Gupta, 2010), arrival times recorded in field and laboratory experi-
ments strongly suggest the existence of rapid preferential flow along fractures, fracture networks, and fault 
zones (Dahan et al., 2000; Weisbrod et al., 2000; Zhou et al., 2006). The dynamic activation of preferential 
flow domains within the vadose zone controls the short- and long-term hydraulic response of the ground-
water to precipitation signals (Nimmo & Perkins, 2018) and therefore affects the magnitude and temporal 
distribution of recharge. This is even more critical given the current predictions of climate-change-induced 
erratic and potentially extreme precipitation patterns (Black,  2009) that require precise estimation and 
management of limited recharge volumes, especially in systems with thick vadose zones (Dvory et al., 2016; 
El-Hakim & Bakalowicz, 2007).

Despite the importance of the vadose zone for infiltration processes both with respect to volumetric ex-
tent and share of the total aquifer volume, modeling approaches often do not (and can not due to missing 
information) consider the complexity of fractured-porous media to model the delay in arrival times and 
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therefore dispersion of an input signal. The complexity arises from geological heterogeneities that provide 
continuous pathways on various scales for rapid percolation and transport within fractures. In karst sys-
tems, precipitation is commonly partitioned into diffuse and preferential components, where the latter 
is commonly linked to direct infiltration in the surrounding area of surface depressions, dry valleys, and 
dolines (Gunn, 1981; Kordilla et al., 2012; Sauter, 1992; Williams, 2008). Fault zones may cut across several 
geological units and provide catchment-scale preferential flow paths in the form of strongly connected 
clusters of fractures (Bodvarsson et al., 1997; Flint et al., 2001; H. H. Liu et al., 2004). Tectonically induced 
stress fields and stress field changes generally promote the formation of local discontinuities, such as frac-
tures, joints, and fault zones in consolidated porous rocks (Ford & Williams, 2013; Neslon, 2001). What sets 
such features apart from typical pore space geometries is their strong anisotropic character, that is, their 
length or spatial extent is orders of magnitude larger than their aperture. When fractures are connected, 
they can form percolating clusters (Adler et al., 2013; Berkowitz & Scher, 1995) that can reach length scales 
far beyond the thickness of individual geological layers/units and potentially extend across the entire va-
dose zone. Similar features can be observed in soil systems, a type of material where the heterogeneity is 
commonly associated with macropores (wormholes), which can also form percolating clusters (Hussain 
et al., 2019; Jarvis, 1998; Nimmo, 2010).

Assessing recharge dynamics in fractured-porous systems on the field scale is difficult (Scanlon & 
Cook, 2002). Phreatic zone techniques assess recharge at the water table or at springs (e.g., tracers, wa-
ter table fluctuations; Cook & Solomon,  1997; Nimmo & Perkins,  2018). Therefore, the estimates can 
potentially reflect catchment-scale dynamics or at least subcatchment recharge processes within the hy-
draulic influence area of the measurement point. In contrast, vadose zone techniques rely on measure-
ments above the groundwater table (e.g., lysimeters, Darcy's law, tracers, Chambers et al., 2019; Heppner 
et  al.,  2007; Rossman et  al.,  2014). They allow a rather localized quantification of recharge or water 
content and only integrate a limited volume above the point of measurement as infiltration commonly 
occurs nearly vertical. Because most of these methods rely on simple assumptions about internal systems 
geometry and percolation processes, the predictive power and temporal resolution is often limited (Scan-
lon & Cook, 2002).

To shed light on complex infiltration processes, laboratory-scale experiments have been a promising ad-
dition to the former investigation methods because they allow important processes to be isolated under 
well-controlled conditions that are often impossible to observe in situ. Small-scale laboratory experi-
ments for gravity-driven partially saturated flow often exhibit erratic or chaotic flow dynamics (Dragila & 
Weisbrod, 2004; Nicholl & Glass, 2005; Su et al., 2001; T. Wood & Huang, 2015). In general, flow modes on 
the wall of wide fractures evolve with increasing flow rates from thin adsorbed films to droplets and riv-
ulets to wavy surface films (Dippenaar & Van Rooy, 2016; Dragila & Wheatcraft, 2001; Ghezzehei, 2004; 
Jones et al., 2017). Different flow modes may also coexist. Consequently, experimental results are difficult 
to cast into meaningful frameworks. This especially concerns the complex flow dynamics at fracture in-
tersections, which act as critical relay points controlling: (1) the overall connectivity of fracture networks 
(Adler et al., 2013); (2) the flow partitioning dynamics between connected fracture elements (Dragila & 
Weisbrod, 2004; Xue et al., 2020; Yang et al., 2019); and, ultimately, (3) the distribution of flow modes 
on fracture surfaces (Dippenaar & Van Rooy,  2016; Jones et  al.,  2017; Shigorina et  al.,  2019), which, 
in turn, can affect the interaction between the porous matrix and fracture (Tokunaga, 2009; Tokunaga 
& Wan,  1997). Here, the term “partitioning” refers to the process of fluid redistribution at a fracture 
intersection, which depends on the relation between capillary, inertial, and viscous forces (Nicholl & 
Glass, 2005) and complexities such as velocity-dependent contact angles (Xue et al., 2020; Yang et al., 
2019).

In terms of fracture aperture, numerical and laboratory studies of unsaturated flow in fractures have cov-
ered various length scales, from submillimeter scales (Glass et  al.,  2003; Ji et  al,  2004, 2006; Nicholl & 
Glass, 2005) over ranges close to the capillary-inertial transition around 0.7 mm (T. R. Wood et al., 2002, 
2005) to apertures well within the inertial-dominated regime (Dragila & Weisbrod, 2004; Tartakovsky & 
Meakin, 2005a, 2005b; Tokunaga & Wan, 1997, 2001; Huang et al., 2005; M. Liu et al., 2007). Studies of free 
surface flow on a fracture plane without an intersection have been conducted by Shigorina et al. (2019); 
Kordilla et al. (2013); Hayden et al. (2012) and Ghezzehei (2004).
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Depending on the experimental setup, studies have focused either on the partitioning process at fracture in-
tersections (Dragila & Weisbrod, 2004) or the (long-term) bulk system response (Ebel & Nimmo, 2013; Nim-
mo, 2010), both of which are integral parts of understanding preferential flow dynamics through fractured 
systems. For the former case, a single fracture intersection of a horizontal and a vertical fracture is often 
“constructed," for example, by breaking glass plates, which results in a quasi-two-dimensional setup (Ji 
et al., 2006). Modifications to this setup include experiments with a slight offset at the fracture intersection 
or T-shaped intersections at various degrees of rotation (T. R. Wood et al., 2005; Xue et al., 2020; Yang et al., 
2019). Intersections resembling an inverted Y-structure have been studied by Dragila and Weisbrod (2004), 
M. Liu et al. (2007) and Tartakovsky and Meakin (2005a). The combination of several commonly cross-
shaped fracture intersections allows flow convergence to be studied, that is, the deviation from classical 
volume-effective diffusive flow dynamics that are typical for nonfracture porous media. Studies of this kind 
have been conducted by T. R. Wood et al. (2002, 2005); T. Wood and Huang (2015); Glass et al. (2003); LaVi-
olette et al. (2003), often reaching timescales of several minutes or days. In the study by Glass et al. (2003), 
fractures are embedded into an impermeable matrix, while the other authors constructed their fracture net-
works from geological materials. Incorporation of the porous matrix can be considered another important 
classification parameter of fracture-scale studies. For large-aperture fractures, that is, inertial-dominated 
flow systems that limit the contact time between fracture flow, matrix flow, and/or a low-permeable matrix, 
the effect of matrix storage may be neglected. This can be observed in fractured karst systems, where frac-
tures are often enlarged by dissolution (Benson, 2001; Dijk et al., 2002) or fractured crystalline rocks with 
extremely low matrix porosity and a severely limited advective potential.

Despite these research efforts, the gap between small-scale process understanding and larger-scale applica-
tion is still significant. In our recent work (Noffz et al., 2019), we demonstrated how to model breakthrough 
behavior in terms of discharge at the bottom of arbitrary long stacks of sugar-cube fracture arrays (Baren-
blatt et al., 1960) via linear response theory and convolution of input signals, whereas the transfer function 
has been obtained empirically for a given setup of a wide-aperture vertical surface intersected by a horizon-
tal one. However, it is desirable to obtain the form of the transfer function a priori using information about 
the internal geometry as well as fluid properties and fluid–solid interaction characteristics. Therefore, in 
this work, we provide an analytical solution for the transfer function and validate it using numerical simula-
tions. The analytical solution describes the horizontal fracture infiltration until critical pressure thresholds 
trigger the breakthrough. The following dynamics are governed by Washburn-type flows and are concep-
tually based on the numerical studies and former laboratory studies (Noffz et al., 2019). Vertical flows are 
approximated by a film flow model. Finally, we employ linear response theory to model flow through arbi-
trary numbers of fracture intersections with explicit geometry and derive nondimensional dispersion and 
velocity parameters (  ,D v) that depend on the dimensionless horizontal and vertical fracture time scales (τm, 
τ0). Flows are shown to converge to a near-constant dispersion coefficient with increasing τm, while nondi-
mensional velocities scale as   1/2

mv  within feasible critical Reynolds number ranges.

2.  SPH Model
We use a two-dimensional SPH model to analyze complex flow partitioning at fracture intersections. SPH 
is a Lagrangian meshless method able to simulate complex flows with highly dynamic interfaces and is 
especially suited for the simulation of free-surface (pseudo-multiphase) liquid flows with a continuous 
gas phase, effects of surface tension, and static/dynamic contact angles. We use a two-dimensional version 
of the massively parallel three-dimensional code of Kordilla et al. (2017) that has been extended with an 
alternative formulation of the no-slip boundary condition. For a detailed description of the SPH free flow 
model and its implementation in a parallel code, the reader is referred to Kordilla et al. (2017) and referenc-
es therein. The SPH equations are summarized in Appendix A.

Here, we validate the SPH code for two classical static and dynamic flow cases that are related to the pro-
cesses encountered in our application of flow in fractures, Poiseuille flow in a parallel plate system, and 
capillary rise in a vertical tube. The Poiseuille flow example serves to verify the proper implementation of 
viscous forces at the solid–fluid interface. These forces are important for both the film flow, where flow is 
bounded on one side only, and the flow that fully fills horizontal fractures.
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2.1.  Poiseuille Flow

In this section, we demonstrate that for sufficiently large values of the friction coefficient β in the SPH 
momentum conservation Equations A3 and A6, the SPH method recovers the solution of the NS equations 
subject to no-slip boundary conditions at the fluid–solid boundary. Specifically, we use the SPH code with β 
ranging from 1 × 10−1 to 1 × 102 kgm2s−1 to simulate a two-dimensional Poiseuille flow problem and validate 
the SPH solutions for velocity against the analytical solution for the no-slip boundary condition (Sigalotti 
et al., 2003)

  
 

     
      
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2 2 2
2 2
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where the center is located at y = 0, d = L/2 such that the solid boundaries are located at y = ±d, ν = μ/ρ 
is the kinematic viscosity, and af is the component of the body force per unit mass acting in the x direction 
(the direction of flow).

Flow is simulated using the following parameter set: the interparticle spacing is Δx  =  5  ×  10−5  m, 
L = 200Δx = 1 × 10−2 m, ρ = 1,000 kgm−3, and μ = 1.25 × 10−3 kgm−1s−1 , and an acceleration of af = 1.25 × 
10−5ms−2 is applied parallel to the x direction. Five layers of boundary particles are placed at y = 0 and y = L 

to assure kernel consistency. For the given parameter set, this yields a Reynolds number of 






 Re 1.0xv L
, 

where 
xv  is the maximum steady-state velocity.

Results indicate that the SPH solution converges to the exact no-slip solution for β > 10 (which corresponds 
to the artificial slip length λ < L/100) with an error on the order of 1.5% or lower. This holds for all time 
steps during the initial acceleration of the fluid within the capillary. It should be noted that for much higher 
values of β, the time steps have to become increasingly smaller according to Equation A7, which was not 
enforced in these simulations. Therefore, a slight increase in the error can be observed for values above 
β = 20, a strategy that is employed in this study.

2.2.  Capillary Rise in a Tube

Here we simulate capillary rise in tubes of varying radii and compare the equilibrium fluid column height 
to the classical theory of Jurin (1718) and the extended theories of Legait and de Gennes (1984) and Barozzi 
and Angeli (2014).

The classical theory of capillary rise is based on the parallel plate concept:




2Δ (2 )
( ) 12

dh P r
dt h t

� (2)

where r is the radius of the fracture, and h is the height of the triple contact line from the water surface. The 
total pressure in a two-dimensional system consists of the capillary pressure and the pressure due to the 
weight of the water column

   2 0( ) ( )D
c h

cosP P gh t
r

� (3)

Plugging the total pressure  2Δ Δ D
c hP P P  into Equation 2 and for dh/dt = 0, the maximum rise becomes:

 


 0( )Δ cosh
r g� (4)

Because the curvature of the meniscus slightly depends on h, a common extension of Equation 4 is given 
by Legait & de Gennes (1984) as:
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Barozzi and Angeli (2014) extend the solution by adding a correction term that accounts for the additional 
fluid volume over the apex of the meniscus

 
 

 0( )Δ
3 ( )

cos rh
r g cos� (6)

The SPH simulations are run with an interparticle spacing of Δx  =  5  ×  10−5  m, and a density of 
ρ = 1,000 kgm−3 and a body force of g = 9.81 ms−2 are applied in normal direction to the bottom boundary. 
The viscosity is μ = 0.001 kgm−1s−1 and the no-slip condition is enforced with β = 25. The speed of sound 
is set to c0 = 3 m.s−1. Interaction forces are set to ssf = 0.015 and sff = 0.02, which yields a surface tension of 
σ = 0.0742 kgs−2 and a static contact angle of θ0 = 69°. The domain has a width of Lx = 800Δx = 4.0 cm. The 
height of the capillary is Ly = 340Δx = 1.7 cm and is placed ΔLy = 60Δx = 3 mm above the bottom boundary. 
Mirror boundaries are applied in the x-direction. All solid boundaries are five particles thick to assure ker-
nel consistency. Simulations are initiated with a flat fluid surface covering the domain with an initial height 
of 145Δx = 7.25 mm. The aperture of the capillary is varied in a range of 1.5–3.5 mm.

Simulations are run until an equilibrium is established and the maximum height is reached within the 
capillary. In order to measure Δh, we determine the minimum height hmin of the fluid as the average of 
the water height 20Δx away from the left and right mirror boundaries (see Figure 1). The maximum height 
hmax of the fluid column is measured at the outer part of the capillary meniscus, and we therefore obtain 
Δh = hmax − hmin. The contact angles at equilibrium are obtained from a circle fit using the Pratt method 
(Pratt, 1987) (Figure 2, left).

Results of the SPH simulations and theoretical results are shown in Figure 2. Numerical results are in good 
agreement with the theoretical predictions and lie in between the predictions of Jurin (1718), Legait and de 
Gennes (1984) and Barozzi and Angeli (2014). The latter study takes into account the effect of additional 
fluid volume above the meniscus apex which becomes increasingly important when the capillary rise hc is 
on the order of capillary radius r. This is true for the shown example (hc/2r ∼ 0.5–2.2).
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Figure 1.  2D simulations of capillary rise shown at steady-state conditions. The insets show the upper fluid front. The 
height of the capillary is Lc = 1.7 cm, and the width of the domain is Lw = 4.0 cm with periodic boundary conditions in 
the x-direction.
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3.  Results and Discussion
In the following subsections we (1) conceptualize the flow partitioning at a T-type fracture intersection, 
(2) derive an analytical transfer function for the partitioning including fluid movement on the vertical 
surfaces, (3) provide an upscaling solution via convolution and linear response theory, and finally (4) de-
rive expressions for arrival times and bulk dispersion that are then (5) analyzed in nondimensional form 
to provide a comprehensive picture of the larger-scale infiltration dynamics and its relation to the internal 
geometry.

3.1.  Rivulet Flow Partitioning at a Fracture Intersection

In this section, we derive a solution for the partitioning dynamics of rivulet flow down a vertical plane 
intersected by a horizontal smooth fracture (see Figure 3) and compare it to our SPH model results. We 
consider the threshold at which critical capillary pressures within the horizontal fracture are high enough 
to route flow further down onto the vertical surface. At this point, flow in the horizontal fracture tran-
sitions from a linear plug-flow type into a Washburn-type flow regime. It should be noted that the con-
ceptual model assumes that flow within the horizontal fracture is capillary-driven; therefore, wide-aper-
ture horizontal fractures (e.g., cave-like structures) where the fluid may establish free-surface flows (low 
capillary flows) are not taken into account. Furthermore, we assume that flow on the vertical surfaces 
takes the shape of rivulets. This assumption is often made in soil systems for preferential flows (Bogner 
& Germann, 2019; Germann & Hensel, 2006; Nimmo, 2010) and has been shown to also hold under labo-
ratory conditions (Noffz et al., 2019), yet, more complex flow-rate-dependent modes (droplet, slugs) may 
occur (Ghezzehei, 2004; Kordilla et al., 2017) that trigger early partitioning at intersections (T. R. Wood 
et al., 2005; Xue et al., 2020; Yang et al., 2019) and are different from the sequential approach considered 
in this work.

The flow rate Qh(t) (m2s−1) in the horizontal fracture is approximately given by the Darcy law:





( ( ) )

( ) ,
( )

in f
h

ka P t P
Q t

l t
� (7)

where t is time from the moment water entered the horizontal fracture, k = a2/12 (m2), a is the aperture (m), 
μ is the viscosity, Pf and Pin(t) are the pressures at the invading front (point 1 in Figure 3a) and the horizontal 
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Figure 2.  (Left) Liquid–gas interfaces for all capillary sizes and the respective circle fit using the Pratt method. (Right) 
Theoretical predictions of the capillary rise hc are plotted using the average contact angle of all simulations.
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fracture entrance (point 2 in Figure 3a), respectively, and l(t) is the distance from the front to the fracture 
entrance.

From the Young-Laplace law, the pressure at the invading front is

    
2cos( ) ,f air airP P P

R a
� (8)

where σ is the surface water–air surface tension, Pair is the air pressure, 


2cos
aR  is the front curvature, 

and θ is the contact angle.

Initially, all flow in the vertical fracture is diverted to (imbibed into) the horizontal fracture, that is, 
Qh(t) = Q0, as shown in Figure 3a. Later, flow partitions, where flow both penetrates the horizontal fracture 
and flows down the wall of the vertical fracture segment, as depicted in Figure 3b. When flow is partitioned, 
Pin(t) = Pair (point 3 in Figure 3b). In the following analysis, we assume that partitioning occurs instantane-
ously at time t = tc. Then, Equation 7 can be rewritten as

 


 
  


0, ,
( ) 2 cos( ) , .

( )

c

h
c

Q t t
Q t k t t

l t
� (9)

The front position in the horizontal fracture at the time of partitioning is obtained by setting

 


0
2 cos( ) .

c

kQ
l� (10)

Thus, we obtain
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Figure 3.  Conceptual model for the partitioning process at a fracture intersection. Flows on the vertical surfaces are bounded by one fracture wall only 
assuming wide aperture conditions. Breakthrough occurs at time tc after which the horizontal imbibition scales as l ∼ t0.5.
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 



0

2 cos( ) .c
kl

Q� (11)

The velocity of the displacing fluid for t < tc is equal to Q0/a. At times tc, the penetration depth is given by 
Q0tc/a = lc and thus we obtain for tc

 


  2
0 0

2 cos( ) .c
c

l a kat
Q Q� (12)

The penetration depth l(t) ∼ t increases linearly with time for t < tc and according to ( )l t t  for t > tc (see 
Appendix B). The Washburn-type flow behavior is valid only at times much larger than tc. We do not model 
the transitional flow behavior between the plug and Washburn modes, but represent the change between 
the two flow modes as abrupt. Thus, we approximate the penetration depth by matching the linear and 
square root behaviors at tc as follows,


 
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0 , ,
( )

/ , .

c

c c c

Q t t t
l t a

l t t t t
� (13)

Figure 4 shows lc and tc, computed from Equations 11 and 12 and direct SPH simulations, as a function of 
the flow rate Qin for three horizontal apertures (2.5, 3, and 3.5 mm). SPH simulations for the fracture aper-
ture 2.5 mm and three different flow rates are shown in Figure 5. In SPH simulations, we use an interparti-
cle spacing of Δx = 5 × 10−5 m, a density of ρ = 1,000 kgm−3, and a body force of g = 9.81 ms−2 applied nor-
mal to the horizontal fracture plane. The surface tension is σ = 0.0742 kgs−2 with the interaction parameters 
sff = 0.015 and ssf = 0.0125 and speed of sound c0 = 3 ms−1. The viscosity is slightly increased to μ = 0.005 kg-
m−1s−1 to limit the required length of the horizontal fracture (and hence computation time), which was set 
to L = 0.25 m. The no-slip boundary condition is enforced with β = 25 (see Figure 6). For the flow rates 
between Q0 = 3 × 10−5 m2s−1 and 8 × 10−5 m2s−1 and fracture apertures between a = 2.5 and 3.5 mm, the 
critical penetration length can be observed within the chosen fracture length. To avoid erratic partitioning 
behavior at the fracture intersections (i.e., bypassing droplets), we initiate the simulations with a rivulet on 
the upper vertical surface, which is already in contact with the horizontal fracture aperture at the start of 
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Figure 4.  Critical transition times tc and critical length lc of the SPH model and the respective analytical solutions (black lines, Equations 11 and 12). Contact 
angles are taken as averages of the angle at initial fracture penetration and the angle at tc.
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the simulation. While under certain conditions this may prevent other partitioning patterns (e.g., droplets, 
snapping rivulets) at the intersection, Noffz et al.  (2019) demonstrated with laboratory experiments that 
this behavior is to be expected at consecutive fracture intersections. Independent of the initial flow mode 
(rivulets, droplet), they found that after the first fracture intersection the flow on vertical walls was dom-
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Figure 5.  Breakthrough regimes at the horizontal fracture intersection (shown for an aperture of a = 2.5 mm) for 
three different flow rates (increasing from left to right) and at three time steps. Three regimes can be distinguished: (1) 
slow breakthrough, (2) moderately fast breakthrough, and (3) fast breakthrough. A detailed description of the regimes 
can be found in the text. The insets show the detailed view of the liquid–gas interface at the invading fluid front and at 
the fracture intersection.

Figure 6.  Comparison of the SPH model with the time-dependent solution for Poiseuille flow in a parallel plate 
system. The right figure shows the absolute percentage error, which is below ≈1.5% for sufficiently large β (>10), that is, 
proper no-slip conditions.
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inated by rivulets. Figure 4 demonstrates that our SPH simulations are 
in good agreement with the analytical predictions of Equations 11 and 
12 for small fracture apertures (2.5 and 3 mm) and larger Q0 but slight-
ly deviate for larger apertures (3.5 mm) and smaller Q0, resulting in the 
maximum error of ∼12%. We partially attribute this to the fact that the 
contact angle θ changes during the water penetration into the horizontal 
fracture (e.g., Popescu et al., 2008). In our analytical model, we disregard 
dynamic variations in the contact angle and compute θ as an average of 
the contact angles right after the onset of fracture penetration and close 
to tc. Yet, Figure 4 demonstrates that our analytical solutions provide an 
overall good approximation of the partitioning dynamics.

3.2.  Analytical Solution for the Transfer Function

We now derive analytical solutions for l(t), the front position (or the depth 
of penetration) in the horizontal fracture, and Q(t), which is the outflow 
rate below the horizontal fracture junction where fluid is discharged.

Given that the inflow consists of (1) a linear penetration phase and (2) a 
Washburn-type penetration period, we obtain an analytical solution as 
follows



 
   

      

1/20

1, ,

( ) 1 , .
2

c

f
c max

c

t t
dl Qv t tdt a t t t

t
� (14)

vf(t) is the Washburn-type flow velocity after the critical time tc, and tmax is the time at which the horizontal 
fracture is fully saturated and all fluid is channeled further down into the vertical fracture segment.

Figure 5 shows the different flow stages observed in the SPH simulation, and Figure 7 shows the time-de-
pendent penetration l(t) and inflow velocity dl(t)/dt obtained from Equation 14 for an aperture a = 2.5 mm 
and an inflow rate of Q0 = 4 × 10−5 m2s−1 to Q0 = 8 × 10−5 m2s−1. The early time behavior is characterized 
by a plug-flow regime and hence l(t) ∼ t, whereas after the critical time tc, the inflow scales as ( )l t t  
(gray lines show both scaling regimes). At the time tc, the analytical solution assumes a sudden jump in 
velocity due to the flow transitions from pure plug-flow within the horizontal fracture to a Washburn-type 
flow due to the breakthrough at the fracture intersection. The flow velocity in the horizontal fracture drops 
because of less fluid volume entering the fracture (which is instead channeled downwards onto the vertical 
fracture). The analytical solution for the penetration velocity dl/dt can describe both regimes (before and 
after the critical time tc) and is in very good agreement with the numerical result. A slight deviation can be 
observed right after the onset of the Washburn behavior at time tc, where channeling into the lower vertical 
fracture is initiated. Here, a very brief buildup of fluid at the fracture intersection occurs until a critical 
contact angle is reached and fluid flows downwards, that is, the breakthrough process is not perfectly in-
stantaneous as assumed in the analytical solution but occurs over a small time window close to tc. Figure 5 
shows three partitioning types that have been determined based on a qualitative observation. For smaller 
tc, the breakthrough process is a rather rapid process (“fast breakthrough” right column, Figure 5), while 
for larger tc (and for example lower flow rates Q0), the buildup of fluid on the vertical surface slightly dis-
perses the breakthrough (Figure 5, left and middle column, “slow” and “moderately fast” breakthrough), 
yet a clear sequential progression of plug flow followed by Washburn flow in the horizontal fracture can 
be observed. The process of fluid buildup is not explicitly considered in our solution and is likely to induce 
the small temporary drop of the inflow velocity right after tc (beyond the correct drop in velocity due to 
fluid entering the lower vertical surface instead of the horizontal fracture). However, at later times the 
velocity correctly converges toward the l(t) ∼ t0.5 scaling. The cutoff at tmax is not shown here because the 
simulations are stopped when flow reaches the end of the horizontal fracture such that dl/dt = 0. It should 
be noted that for very small tc or large Q0, flow may not exhibit the clear dynamics of sequential partition-
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Figure 7.  SPH simulations correctly recover the linear (plug-flow) and 
Washburn behavior. The inflow velocity dl/dt and the analytical solution 
(Equation 14) are in very good agreement. Note that the fluid front did not 
fully penetrate the horizontal fracture in the simulations; therefore, the 
cutoff at tmax (l = const., dl/dt = 0) is not visible here. Here, a = 2.5 mm 
and the inflow rate ranges from Q0 = 4 × 10−5 m2s−1 (bright red) to 
Q0 = 8 × 10−5 (dark red). Gray lines indicate the two characteristic scaling 
regimes.
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ing and a breakthrough can occur right away even before the theoretical 
time tc due to effects of inertia, which we do not consider. Yet, for the 
covered range of flow rates, our model is in very good agreement with 
the theoretical solution.

To model the response of the system to a constant input signal Q0, we 
obtain the outflow rate Q leaving the system:

 0 ( ) .fQ Q v t a� (15)

Thus, the dimensionless flow rate is


 

       
 

1/2

0

( ) 1( ) ( ) ( ).
2c c max

c

Q t tF t H t t t t t
Q t

� (16)

Next, we define the normalized transfer function as

 
( )( ) .dF tt

dt
� (17)

The transfer function for a plug-flow type regime followed by a Wash-
burn-type behavior has the form

   




 
           

 
 

    
 

1/2

3/2

1( ) ( ) ( ) ( )
2

1 , ( )
4

c max c
c

c max
c c

dF tt t t t t t t
dt t

t I t t t
t t

� (18)

where δ is the Dirac delta function.

To numerically integrate the transfer function, we replace the Dirac delta function in Equation 18 by

 


    


1 Δ Δ,
( ) Δ 2 2

0, otherwise
n

t tt
t t� (19)

where Δt = 0.1. Figure 8 shows the normalized outflow rate Q/Q0 (exact and approximate solution) and 
its derivative, the normalized transfer function   

Q dQ dt
0

1
/ . The outflow Q/Q0 is zero at first (all fluid is 

filling the horizontal fracture) until the critical time tc, where partitioning sets in and inflow is characterized 
by a Washburn behavior. Finally, when the horizontal fracture is fully saturated at tmax, the outflow Q/Q0 
reaches its maximum value, that is, Q = Q0 and Q/Q0 = 1.

3.3.  Extension of the Transfer Function

In the previous section, we focused on the process of horizontal fracture inflow and partitioning; however, 
we did not consider the effect of additional vertical surfaces above or below the fracture intersection, which 
affect the system response and therefore the transfer function. In the following section, we extend the trans-
fer function based on classical Nusselt film flow approximations (Nusselt, 1916), which assume a constant 
film thickness.

The velocity profile of flow down an inclined plane in the x direction is governed by

 


 
2

2
sin( ) ,xd v g

dy
� (20)
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Figure 8.  Normalized outflow rate and transfer function   1
0( ) /t Q dQ dt 

for a system with a = 2.5 mm and Q0 = 5 × 10−5 m2/s. The approximate 
solution for the outflow rate employs an replacement function for the 
Dirac function (Equation 19).
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where y is the direction normal to the surface and α is the inclination angle from the horizontal. The bound-
ary conditions are established via a no-slip condition at y = 0, that is, vx(0) = 0, and the normal viscous stress 
being zero at the free surface y = h,



 0.x

y h

dv
dy� (21)

The solution of this problem is

 


 
sin( )( ) (2 ).
2x

gv y y h y� (22)

The volumetric flux down the plane is then calculated as

 


 
3

0
sin( )

3
h

x
g hQ v dy� (23)

and, hence, the maximum film height for a given Q is


 

 
  
 

1/3
3 .
sin( )

Qh
g

� (24)

The depth-averaged velocity can be obtained as

  0 .h
x

Qv v dy
h

� (25)

The effect of the upper vertical surfaces is simply a delay in the first arrival, i.e., a positive shift in the trans-

fer function by Δ v
upt , given that Q = Q0. Using Equation 25, we can then simply compute Δ v

upt  as

 
0

Δ
v
upv v

up up
up

Lht L
Q v� (26)

where v
upL  is the total length of the upper vertical surface. On the lower vertical surface, a similar shift in 

the transfer function is induced; however, here the outflow rate is initially Qc = Q(tc). It should be noted 
that here tc is the critical time since the beginning of the fracture penetration. For the sake of simplicity, we 
neglect the increase in Q after the breakthrough at tc and assume that the flow velocity on the lower vertical 
surface depends on the breakthrough flow rate Qc. The flow rate at the critical breakthrough is obtained via 
Equations 14 and 15 as

 0 ,c cQ Q v a� (27)

where vc = limϵ→0vf(t = tc + ϵ). We then obtain the time Δ v
lowt  as

 Δ
v

v v low
low low

c low

h Lt L
Q v� (28)

and define the total shift induced by the upper and lower vertical surfaces as

 Δ Δ Δ .v v
up lowT t t� (29)

The cutoff at time tmax, when the horizontal fracture is fully saturated can be computed by setting 
l(tmax) = lmax, which gives

 2( / )max c max ct t l l� (30)
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The flow rate at the cutoff time tmax can be evaluated using Equation 14 

with  
1( lim )max max xv t t
x

 yielding the flow rate

 0 .max maxQ Q v a� (31)

We are now able to compute the full transfer function, including the resi-
dence times on the upper and lower vertical surfaces as well as the cutoff 
at full fracture saturation. In the next chapter, we extend this analysis to 
model discharge through arbitrary large stacks of fracture intersections 
via linear response theory.

3.4.  Analytical Percolation Model for Fracture Cascades

Following Noffz et al.  (2019), we employ the transfer function in the 
context of linear response theory (Jury et al., 1986) to model the out-
flow rate Qn(t) at the bottom of the vertical surface intersected by n 
horizontal fractures. For the sake of comparison, two additional sim-
plified cases are considered: (1) Flow within the horizontal fracture is 
governed entirely by plug-flow even when tmax > tc, and (2) horizontal 
fractures are inactive due to missing capillary action (e.g., macropores, 
cave-like structures). The considered geometry and its properties with 
respect to the transformation of an input signal Q0 serves as a proxy for 
consecutive routing through further fracture intersections of similar 
geometry. The outflow rate can be found as a convolution of the input 
signal

          
11

0 1 1 2 1 2
0 0 0

( ) ,
ttt n

n n nQ t Q dt t t dt t t dt t
‐

‐ ‐� (32)

or

        1
0

( )
t

n nQ t t t Q t dt‐‐� (33)

Note that for n = 1, the outflow rate Q1 = Q is given by Equation 15.

Figure  9 shows an example for the computed outflow rates Qn(t) for a 
system of n  =  1, 25 and 50 fractures, employing Equation  32 and the 
transfer function Equation 18 where tmax > tc with the Dirac delta approx-
imation Equation 19. Here, the maximum horizontal fracture length is 
Lmax = 0.3 m, the aperture a = 2.5 mm, the static contact angle θ0 = 69.0°, 
the density ρ = 1,000 kgm−3, the surface tension σ = 0.0742 kgs−2, viscosi-
ty μ = 0.005 kgm−1s−1, and the inflow rate Q0 = 5 × 10−5 m2s−1. The upper 
and lower vertical surfaces have a length of   0.2v v

up lowL L  m. The two 
additional cases exhibit no dispersion because of missing Washburn-type 
dynamics. If the impact of horizontal fracture is completely ignored, the 
arrival times are nearly one order of magnitude lower than in the com-
plex case. When the penetration is entirely governed by plug-flow, the 
first moments of the breakthrough correspond to the first moments of 
the complex case including Washburn-flow. However, the first arrival in 
the latter case occurs earlier due to the pressure-induced breakthrough.

Figure 10 shows the outflow rate for a system with Lmax = 0.05 m, where 
flow is dominated by a plug-flow behavior and tmax > tc. As expected, the 
mean breakthrough velocity is higher and the maximum outflow rate Q0 
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Figure 9.  Application of the transfer function Equation 18 with 
Equation 19 and the convolution Equation 32 to a system of n = 1, 20, 
and 40 fractures and Lmax = 0.3 m where tmax > tc (for further parameters, 
see section 3.4). The solution takes into account the shift in time of Δ v

upt  
and Δ v

lowt . Simplified cases for n = 1, 20 and 40 neglect the impact of the 
horizontal fracture (red) or assume constant plug-flow until tmax (blue).
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Figure 10.  Application of the transfer function Equation 18 with 
Equation 19 and the convolution Equation 32 to a system of n = 1, 20, and 
40 fractures and Lmax = 0.05 m where tmax < tc (for further parameters, see 
section 3.4). The solution takes into account the shift in time of Δ v

upt  and 
Δ v

lowt . The simplified case for n = 1, 20, and 40 neglects the impact of the 
horizontal fracture (red).
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is reached faster because of the stronger dispersive effect of deeper horizontal fractures. As in the previous 
example, a faster breakthrough is observed when horizontal fractures are ignored. However, due to the 
comparably small length of the horizontal fracture, the effect is less pronounced.

3.5.  Arrival Times and Dispersion

The distribution of residence times after n horizontal fractures is defined by

   

   

 

 


   
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
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


1

1 1 2 1 2
0 0 0

2

1 2 1 1
0

1 ( )( )
tt

n
n

tn

n n n n

dQ tf t dt t t dt t t
Q dt

dt t t t
� (34)

and its Laplace transform is given by

  * *( ) ( ) .n
nf� (35)

The first and second moments of the travel time are given by
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Thus, for the mean and the variance of residence time we obtain

  
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This means that the first moment and the variance are given by

  2 2
1 1 2 1, ( ),m nh n h h� (40)

where h1 and h2 are the first and second moments of the residence time for a single fracture. They are given 
by (see Appendix C)

 
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To determine the fluid arrival times after n fractures, we add a constant time shift ΔT to the residence time 
in a single horizontal fracture. Thus, the quantities h1 and h2 are modified as

 1 1 ΔTh h T� (43)
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   2
2 2 12 Δ Δ .Th h h T T� (44)

We nondimensionalize time with respect to the critical time tc such that

  1/21
1 m

c

hh
t� (45)

   3/22
2 2

1 2 ,
3 3 m

c

hh
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where τm = tmax/tc is found from Equation 30 as

  2( / ) .m max cl l� (47)

The arrival time moments are nondimensionalized accordingly as

   1/2
1 0T mh� (48)
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1 2 2 ,
3 3T m mh� (49)

where the dimensionless τ0 = ΔT/tc (Equations 12 and 29) is given by
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The equivalent flow velocity and dispersion coefficients are given in terms of the mean m1 and variance σ2 
of the arrival times at a plane at z = nΔz, where Δz is the spacing between horizontal fractures,
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We nondimensionalize lengths by Δz and obtain
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In the following, we study the behavior of the nondimensional dispersion coefficient D and the flow veloc-
ity v  as functions of the nondimensional times τm and τ0.

3.6.  Dimensionless Analysis of Flow Through a Fracture Network

To investigate the effect of nondimensional times τm and τ0 on the dimensionless flow velocity v and disper-
sion coefficient D (Equations 53 and 54), we conduct a multiparameter study. The minimum and maximum 
values of τm and τ0 are computed for all parameter combinations of Q0, lmax, θ0, a, and Δz. As we carry out our 
study in 2D, the proposed ranges for the flow rate should be interpreted in terms of the maximum film thick-
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ness on the vertical surface. We vary Q0 in the range of 1 × 10−6 to 1 × 10−2 m2s−1, which yields a film thick-
ness on the vertical surfaces between 63.7 µm and 1.5 mm according to Equation 24. This range has been 
observed and modeled in various studies (Dragila & Weisbrod, 2003; Dragila & Wheatcraft, 2001; Patnaik & 
Perez-Blanco, 1996; Tokunaga & Wan, 1997). However, it should be noted that flows in the upper range on 
the order of millimeters are known to develop a wavy-laminar structure with low and high amplitude waves 
traveling as a rolling film (Ghezzehei, 2004; Patnaik & Perez-Blanco, 1996) and therefore are likely to devi-
ate from the simple film flow approximation. The horizontal fracture depth lmax ranges from 0.01 to 4 m with 
an aperture a of 0.5–10 mm. The upper limit of the fracture length range has been chosen following Olson 
et al. (2007), who demonstrated that cumulative fracture lengths in fractured systems under various stress 
boundary conditions converge toward a maximum value of ∼4 m. While fracture apertures cover all length 
scales from micron to centimeter scales (Bonnet et al., 2001), apertures in the vadose zone are more likely 
to cover the upper portion of this range due to less overburden pressure and possibly enhanced dissolution 
(e.g., in karstic limestones). The chosen aperture range has for example been reported by Bahat (1987) and 
Weisbrod et al. (1998), who studied fractured chalk systems in the northern Negev desert of Israel. For aper-
tures on the order of tens of millimeters, the assumption of capillary-driven flow in the horizontal fracture 
is likely violated in natural systems, and low-capillary free surface flows may develop. The static contact 
angle θ0 is chosen to vary from 5° to 85° corresponding to a wetting regime that has been observed in vari-
ous studies (Sobolev et al., 2000; Su et al., 1999, 2001; Tokunaga & Wan, 2001). Even lower or higher angles 
are possible, but this changes the conceptual framework. Near-zero contact angles may indicate spreading 
of a fluid, for example, because of micro-roughness or interaction with adsorbed films in the presence of 
a porous matrix (Shigorina et al., 2017; Tokunaga & Wan, 1997). Contact angles above 90° indicate hydro-
phobic conditions and fluids would require external forces beyond the capillary drag to enter a void space 
such as a fracture. The latter conditions are rarely met and have been observed in soil systems (Bachmann 
et al., 2000). Finally, the vertical fracture spacing Δz ranges from 0.1 to 25 m. For the sake of simplicity, we 
have chosen an equidistant setup for the vertical spacing, while natural fracture systems are often classified 
with respect to their regularity and follow a distribution (Hooker et al., 2013; Marrett et al., 2018). As we 
nondimensionalize the bulk properties with respect to the constant fracture spacing Δz, it is difficult to in-
clude a distribution in the analytical expressions derived here. However, in principle, the model can employ 
an irregular fracture spacing via suitable distributions in the transfer function φ and computation of the 
outflow (and dispersion) via Equation 32.

For the given parameter ranges, τm can take values between 8.1  ×  10−6 and 1.4  ×  105 and τ0 between 
3.2 × 10−15 and 6.46. While the above chosen parameters are within feasible ranges, we further limit the 
relevant range of τm and τ0 by constraining the Reynolds numbers within the horizontal fracture. Here we 
calculate the critical Reynolds numbers as




 c
c

v aRe� (55)

where the characteristic velocity vc is computed from the critical length and time

 c
c

c

lv
t� (56)

We chose a maximum value of Rec = 150 to stay within the steady nonlinear laminar flow regime as that 
studied by Dybbs and Edwards (1984).

Figures 11 and 12 show the nondimensional dispersion D and flow velocity v plotted versus the dimension-
less times τm and τ0 over the entire chosen parameter space. The color-coded circles represent the critical 
Reynolds number Rec for each parameter combination scaled from 0.1 to 150, where blue corresponds to 
lower values. Recall that τm encodes the timescale related to the imbibition process in the horizontal frac-
tures, and τ0 encodes the timescale for flow on the vertical fracture. Figure 11 (left) shows the dependence 
of the nondimensional dispersion coefficient D on the horizontal fracture timescale τm for several values of 
the vertical fracture timescale τ0. In general, D increases with higher values of τm and approaches a constant 
maximum of  0.08D  for τm > 105. Within the maximum ranges defined for the Reynolds number, only 

KORDILLA ET AL.

10.1029/2020WR028775

16 of 27



Water Resources Research

values of τ0 < 1 are close to reaching this constant maximum, while for τ0 > 1, the dispersion increases for 
the considered range of τm. The smaller initial gradient of Δ / Δ mD  (e.g., τ0 = 7.5) is caused by the nonline-
ar Washburn dynamics within the horizontal fracture. For smaller values of τm, the initial rapid (potentially 
plug-flow type when tmax < tc) infiltration dominates the bulk flow, while for higher values of τm, the clas-
sical t  scaling comes into effect and causes stronger dispersion of the breakthrough signal. Furthermore 
this example demonstrates how the ratio of τm and τ0 affects the nondimensional dispersion coefficient. 
Increasing the ratio of τ0/τm strengthens the dominance of the vertical flow paths and therefore decreases 
the overall dispersion, which in our model entirely stems from the horizontal fracture imbibition. However, 
it should be noted that this effect is negligible for values of τ0 < 10−5 (Rec restricted) and already vanishes for 
τ0 < 0.1. This is similar to the behavior displayed by the dimensional example (Figures 9 and 10), where the 
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Figure 11.  Nondimensional dispersion coefficient D and flow velocity v versus the dimensionless horizontal fracture timescale τm. Colored circles represent 
critical Reynolds numbers Rec scaled from 0.1 (blue) to 150 (yellow). Note that τm ≥ 1 for the left plot because the strict analytical solution for the pure plug-flow 
regime (tmax < tc, tmax/tc < 1) does not cause any type of dispersion.
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Figure 12.  Nondimensional dispersion coefficient D and flow velocity v versus the dimensionless vertical fracture timescale τ0. Colored circles represent 
critical Reynolds numbers Rec scaled from 0.1 (blue) to 150 (yellow).
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number of fractures and, therefore, the magnitude of horizontal imbibition (inversely related to the fracture 
spacing Δz) is positively correlated with the dispersion and for plug-flow-regime dynamics, no dispersion 
occurs (tmax > tc, equivalent to a very high ratio of τ0/τm or low values of τm).

Figure 11 (right) demonstrates the dependence of the dimensionless flow velocity v on the horizontal frac-
ture timescale τm for a range of τ0 between 0 and 7.5. Two regimes can be observed. For low values of τm, 
the velocity converges toward a constant value, while for higher τm, the nondimensional velocity scales as 

  1/2
mv  in accordance with Equation 53. This transition occurs at the time τm that increases with τ0/τm be-

cause of the increased impact of vertical film flow dynamics and plug-flow type dynamics in the horizontal 
fracture. For τ0 ≤ 0.01 the velocity scales as   1/2

mv  over nearly the entire range of feasible τm values, and 
the average breakthrough velocities decline with increasing magnitude of the horizontal fracture imbibition 
(e.g., deeper or wider fractures, higher static contact angles). For even lower values of τ0 < 10−5 in the Rec-re-
stricted range, a perfect   1/2

mv  scaling governs the functional relation between nondimensional velocity 
and horizontal fracture imbibition timescale, and no regime transition occurs.

Next, we discuss the dependence of D and v on the vertical fracture timescale τ0. Figure 12 (left) demon-
strates the limited influence of the vertical fracture timescale τ0 on the nondimensional dispersion. Only 
for extreme end-members of the parameter range beyond τ0 ≈ 1 is the effect of vertical fracture flow strong 
enough to counteract the dispersive action of the horizontal fracture and introduce a reduction in disper-
sion. However, within critical Rec ranges, D is only a function of τm. For values of τm > 103 the relationship 
converges toward the constant value of  0.08D .

Similarly, the nondimensional velocity is independent of the vertical fracture flow timescale τ0 within crit-
ical Rec ranges and is only dependent on the flow dynamics within the horizontal fracture encoded by τm 
with a   1/2

mv  scaling behavior. It should be noted that this scaling holds for values of τm < 1 (see Figure 11, 
right); however, here the nondimensional dispersion is  0D  and flow is entirely governed by plug flow in 
the horizontal fracture and film flow on vertical surfaces.

4.  Conclusion and Outlook
In this work, we developed an analytical solution for partially saturated flow through an arbitrarily large 
sugar-cube type fracture network consisting of wide-aperture horizontal fractures intersected by a vertical 
fracture. Based on numerical observations using an SPH code and former laboratory studies, we treat the 
partitioning dynamics at the fracture intersection as a sequential process whereby the fluid is channeled 
from the upper vertical surface into the horizontal fracture and finally onto the lower vertical fracture sur-
face. Flow within the horizontal fracture is shown to follow plug-flow theory until critical pressure thresh-
olds are exceeded. After the breakthrough, horizontal infiltration is governed by a Washburn-type scaling 
until the maximum horizontal fracture depth is reached and the outflow at the bottom of the system equals 
the inflow rate at the top. To model flow through arbitrarily large networks of the same internal structure, 
we capture this process with an analytical transfer function and carry out a convolution of the constant 
input signal following linear response theory. Given the complex parameter space of fluid and geometric 
properties, we analyze the outflow dynamics in terms of nondimensional values of τm and τ0 that encode the 
timescales of flow in the horizontal and vertical fractures and relate them to the nondimensional dispersion 
coefficient D and velocity v. It is shown that within the feasible Reynolds number range, the dimensionless 
dispersion coefficient converges to the value of  0.08D  with increasing τm and is nearly independent of τ0, 
that is, the flow in the vertical fracture does not have an impact on the dispersion coefficient. Furthermore, 
the bulk flow velocities are characterized by a   1/2

mv  scaling that holds for all relevant values of τm and is 
independent of τ0 within critical Rec ranges.

Our work demonstrates the importance of horizontal fractures as drivers for the (lateral) dispersive action 
within a mainly vertically oriented flow field. This conclusion clearly deviates from the classical piston-flow 
dynamics that are often assumed in the field(continuum)-scale flow models in fractured-porous systems 
(Arbel et al., 2010; Lange et al., 2010). As demonstrated in this work, neglecting the effects of Washburn-type 
dynamics (i.e., assuming pure piston flow) and/or neglecting the impact of horizontal fractures heavily al-
ters the dispersive bulk properties and decreases (mean) breakthrough times. Furthermore, our work sheds 
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light on the relation between integral signals at outlet boundaries (e.g., water table fluctuations within bore-
holes) and the internal system geometry that transforms input signals (precipitation, recharge) and mainly 
contributes to the dispersion and bulk velocity within the vadose zone.

In our analysis, we simplify the infiltration process in terms of the fracture-network geometry as well as 
the partitioning process and flow mode occurrence. Our study assumes film flow on all vertical surfaces. 
This assumption is often made in studies related to preferential flow in soil systems and the respective 
macropore structure (Bogner & Germann, 2019; Germann et al., 2007; Nimmo, 2010, 2012; Nimmo & Per-
kins, 2018). However, other flow modes such as flow-rate-dependent droplets (slugs) and rivulets are likely 
to occur on fracture surfaces (Dippenaar & Van Rooy, 2016; Dragila & Weisbrod, 2003, 2004; Ghezzehei & 
Or, 2005; Jones et al., 2017) and are known to affect partitioning at intersections (Kordilla et al., 2017; T. 
R. Wood et al., 2005; Xue et al., 2020). While droplets are more likely to bypass intersections due to their 
extended height (as compared to films) and hence gravitational impact (Kordilla et al., 2017), we have also 
demonstrated that consecutive routing of droplet flows through arrays of horizontal fractures will nearly 
always facilitate the formation of film (rivulet) flows on the vertical wide-aperture surfaces after the first 
partitioning (Noffz et al., 2019). Subsequently, flow is mostly channeled into horizontal fractures without 
bypass, supporting the assumption of sequential flow dynamics made in this study.

Because our study is limited to a two-dimensional fracture network, the observed dependence of the non-
dimensional dispersion D and velocity v on the vertical and horizontal fracture flow timescales must be 
interpreted with care. For stable infiltration fronts, the infiltration dynamics of three-dimensional systems 
can be accurately recovered with two-dimensional models (e.g., Kordilla et al., 2017) using homogeniza-
tion over the third dimension. However, flow on vertical fracture surfaces tends to develop instabilities 
even when these surfaces are perfectly smooth (Shigorina et al., 2019). Such front instabilities can contrib-
ute to fracture-specific channeling and additional dispersion. Front instabilities can develop in horizontal 
fractures as well, even though the formation of instabilities here is not caused by gravitational pull but is 
mainly a result of viscous forces and velocity variations due to changes in fracture aperture (roughness) and 
variations of the capillary radius (Nicholl & Glass, 2005). Apart from the dimensionality of the system, the 
geometrical properties such as the inclinations of the horizontal and vertical fractures are clearly simplified 
because natural systems often deviate from the classical “sugar-cube” geometry. Nonhorizontal fractures 
will decrease the breakthrough time tc when inclination angles are positive (relative to the horizontal) due 
to additional gravitational drag on the fluid entering the fracture. Negative inclination angles may not only 
increase the breakthrough times (due to increasing drag on the fluid front into the fracture) but may even 
lead to a complete change in the conceptual model if fluid leaves the horizontal fractures when reaching 
the maximum depth lmax. For horizontal fractures and under wetting conditions, this effect does not occur 
even when the fracture is open at lmax. The conceptual base for such processes would require adding a 
sink term to the transfer function and therefore increasing the bulk dispersion. Such effects are important 
when assessing flow convergence and integrative properties of fracture networks (Glass & LaViolette, 2004; 
LaViolette et al., 2003) within the vadose zone and add another level of complexity to the problem at hand.

In contrast to other studies, we focus on the case of vertical fractures with wide apertures. Here, the term 
“wide” should be interpreted with respect to the probability of fluid wetting opposing sites of the vertical 
fracture. For contact angles in the range of 25° to 75° droplet heights (neglecting the dynamic flattening 
due to movement) would be on the order of 0.75–2.4 mm, therefore setting a lower limit where one-sided 
flow would persist. Studies focusing on “narrow” vertical fractures often observe a slightly wider range of 
partitioning patterns that stem from the erratic uptake and emittance of potentially chaotic droplet patterns 
from T-type (Xue et al., 2020; Yang et al., 2019) and X-type intersections (e.g., Glass et al., 2003; T. R. Wood 
et al., 2005; T. Wood & Huang, 2015). While the majority of fractures under common geological conditions 
will belong to the “narrow” category, wide-aperture fractures are more likely to be found in the vadose zone 
where overburden pressure is limited and especially in karstic environments where fractures can be affected 
by dissolution (Dahan et al., 1999, 2000). Because most studies are still focusing on individual intersections 
dynamics, a unified theory for a broad range of apertures and partitioning dynamics is still to be developed.

Upscaling of individual processes, such as the intersection uptake and partitioning dynamics, remains 
one of the most challenging aspects in the current state of infiltration dynamics in fractured-porous me-
dia. In this work, we demonstrated how to bridge the gap between small-scale process and larger-scale 
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bulk application using a simple convolution and the analytical derivation of (nondimensional) dispersion 
and velocity parameters. In its current form, the model assumes that convolution occurs over an arbi-
trary number of equally structured intersections. In principle, this could be extended to sequences of 
intersections with dynamic properties by introducing parameter distributions that reflect changes in the 
transfer function φ and therefore outflow Qn(t) over the range of encountered fractures n (Equation 32). 
However, while this would enhance the applicability to natural geological systems, analytical forms of D 
and v would be more difficult to derive. Inclusion of more complex partitioning of different flow mode 
dynamics, (e.g., droplets; Xue et al., 2020; Yang et al., 2019) would be an interesting, yet highly challenging 
extension because the uptake and release of such flows at intersections introduces a highly erratic and 
chaotic component.

As our model assumes impermeable fracture walls, we cannot model effects of porous matrix storage. This 
is justified for low-permeable porous systems, such as granites, or impermeable limestone surfaces. When 
considering the porous matrix, both the vertical fracture walls as well as the horizontal walls will retard 
the movement within the fracture (e.g., Buscheck et al., 1991) and could be introduced via suitable storage 
(sink) terms into the transfer function. The potential influence of the matrix imbibition depends on the 
consolidated material. Sandstones are typically at the upper end of the porosity and permeability (sorptivi-
ty) range and are considered for the following brief example. Assuming a porosity of θ = 0.2 and sorptivity 
of S = 0.15 cm s−0.5 (e.g., Berea sandstone, Kang et al., 2013), a first-order approximation for the potential 
fluid uptake in the studied examples can be made. For the sake of simplicity, we assume that fluid imbibes 
into the porous matrix in the horizontal direction across the entire length of the upper vertical fractures 

 0.2v
upL  m and neglects potential imbibition normal to the horizontal fracture plane during the pene-

tration. For Q0 = 3 × 10−5 m2.s−1, an aperture of a = 2.5 mm, critical time tc = 17 s, and length lc = 0.2 m 
(see Figure 4) yields a horizontal imbibition depth of   0.61imb cl S t  cm and therefore a fluid volume 
of     42.44 10m v

imb upA l L  m2. The volume stored within the fracture until tc is Af = alc = 5 × 10−4 m2. 
Therefore the imbibition into the matrix could potentially reduce the inflow volume and hence velocity 
during this time period by about 50%.

To derive consistent and process-based infiltration functions for fractured-porous media, it is crucial to 
unify the various observed patterns for partitioning dynamics across the scientific community. This will 
require further studies at laboratory and field scales to elucidate the shortcomings of each approach and 
obtain a suitable array of methods adjusted for the respective study setting and data availability. Given the 
strong impacts of climate-change-induced transformation of precipitation patterns (Black,  2009), water 
resources management, specifically in arid and semi-arid regions, requires enhanced models for recharge 
prediction that take into account the rapid preferential flow component that may substantially contribute 
to groundwater replenishment under high evapotranspiration and short but extreme rainfall conditions 
(Pachauri et al., 2014).

Appendix A:  Smoothed Particle Hydrodynamics Model
We employ the SPH method to model free surface flow of water described by the Navier-Stokes (NS) equa-
tions, including the momentum and conservation equations


 


       2 0,d P
dt
v v g v� (A1)

respectively, subject to the Young boundary condition at the liquid–gas–solid interface, the Young-Laplace 
boundary condition at the water–air interface and the no-slip boundary condition at the liquid–solid inter-
face (Kordilla et al., 2017; Tartakovsky & Meakin, 2005a; Tartakovsky & Panchenko, 2016). Here, v is the 
velocity, P is the pressure, ρ is the density, μ is the viscosity, and g is the gravitational acceleration.

To simplify the solution of the incompressible NS Equation A1, we employ the weakly compressible for-
mulation where the continuity equation is replaced with its compressible form dρ/dt = −ρ∇ ⋅ v, and the 
equation of state is used to close the resulting compressible NS equations:
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where ρ0 is the reference water density and P0 is a background pressure. The speed of sound c0 is chosen 
such that |δρ|/ρ ≤ 0.03, where |δρ| is the maximum absolute change in density. This condition is sufficient 
for fluid to behave as an incompressible fluid and to obtain an accurate pressure field (Morris et al., 1997).

The SPH discretization of the weakly compressible NS equation is:
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and
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where e r ij ij ijr /  is the unit vector pointing from particle i to particle j, summations are over all fluid (f) 
and/or solid (s) particles, and W is a two-dimensional Wendland kernel (Wendland, 1995) that establishes 
a smoothed interaction over the range h between particles. To simulate surface tension an additional pair-
wise interaction term (Tartakovsky & Meakin, 2005a) is employed that consists of two overlapping cubic 
spline functions W1 and W2 with a short-range repulsive and long-range attractive component controlled by 
coefficients A and B (Kordilla et al., 2013, 2017):

   1 1 2 2 ˆ( , ) ( , ) .I
ij ij ij ijs AW r h BW r hF e� (A5)

The magnitude of the interaction force depends on the factor s, which assumes values of ssf for solid–fluid 
interactions and sff for fluid–fluid interactions. For values of ssf > sff, wetting conditions are enforced, while 
otherwise nonwetting fluids can be simulated.

No-slip conditions are enforced via a Robin-type volumetric force term following Pan et al. (2014)


 


  


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ik i i k ij
i k ik

m W h
r
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where ni is the normal unit vector (see the definition in Pan et al. (2014), β = μ/λ is the friction coefficient, 
and λ is the artificial slip length. For most fluids, the real slip length is on the order of several nanometers, 
and using such a small λ would result in a prohibitively small time step in the SPH method. We demonstrate 
in Section 2.1 that the no-slip boundary condition can be accurately modeled by setting λ to be 100 times 
smaller than the domain size. We note that in Equation A3, the summation of the viscosity term is only over 
fluid particles, while the no-slip condition is entirely enforced via Equation A6.

The highly nonlinear form of the equation A2 generates sufficiently high pressure (in addition to the repul-
sive part of the interaction force) to prevent fluid particles from penetrating solid surfaces.

To integrate Equation A3, a modified Velocity Verlet time-stepping scheme is employed and time steps are 
constrained as follows (Kordilla et al., 2017; Pan et al., 2014; Tartakovsky & Meakin, 2005c):
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where δ = 0.1.
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Appendix B:  Spontaneous Imbibition
The volumetric flow rate through a fracture conceptualized as a parallel plate is governed by:







3
,

12
dV P a W
dt l

� (B1)

where l is the penetration depth (the length over which the pressure gradient ΔP acts), a is the aperture and 
W is the fracture (unit) width. The change in volume over time can be rewritten in terms of the penetration 
depth into the fracture


dV dlaW
dt dt

� (B2)

Plugging this into Equation B1, we obtain




2Δ
Δ 12

dl P a
dt l

� (B3)

The capillary pressure according to Young's law in the case of a parallel plate is 

 
2 0cos( )Δ ,D

cP
r

� (B4)

where r is the radius of the fracture. Here, we neglect the second principal radius which would otherwise, 
in the case of a tube geometry for example, yield
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Plugging this into Equation B3, we obtain
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Separating the variables and integration from lc to l(t) on the left and from tc to t on the right side yields
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and
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such that the time-dependent penetration length becomes
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Note that this Washburn-type flow behavior is only valid at times much larger than tc. We do not model the 
transitional flow between the plug and Washburn modes, but represent the change between the two modes 
as abrupt and match the linear and square root behaviors at time tc.
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Appendix C:  Moments
To calculate the moments of φ(t), it is advantageous to write the equation as follows,
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where we set
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The zeroth moment is
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Now we determine the first moment:
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Data Availability Statement
All experimental data can be downloaded from https://data.goettingen-research-online.de/dataset.
xhtml?persistentId=doi:10.25625/77DVJA
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