Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/239040
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Viral-Mediated Microbe Mortality Modulated by Ocean Acidification and Eutrophication: Consequences for the Carbon Fluxes Through the Microbial Food Web

AutorMalits, Andrea CSIC; Boras, Julia A. CSIC ORCID; Balagué, Vanessa CSIC ORCID ; Calvo, Eva María CSIC ORCID ; Gasol, Josep M. CSIC ORCID ; Marrasé, Cèlia CSIC ORCID ; Pelejero, Carles CSIC ORCID ; Pinhassi, Jarone; Sala, M. Montserrat CSIC ORCID ; Vaqué, Dolors CSIC ORCID
Palabras claveOcean acidification
Eutrophication
Microbial food web
Viral shunt
Carbon fluxes
Fecha de publicaciónabr-2021
EditorFrontiers Media
CitaciónFrontiers in Microbiology 12: 635821 (2021)
ResumenAnthropogenic carbon emissions are causing changes in seawater carbonate chemistry including a decline in the pH of the oceans. While its aftermath for calcifying microbes has been widely studied, the effect of ocean acidification (OA) on marine viruses and their microbial hosts is controversial, and even more in combination with another anthropogenic stressor, i.e., human-induced nutrient loads. In this study, two mesocosm acidification experiments with Mediterranean waters from different seasons revealed distinct effects of OA on viruses and viral-mediated prokaryotic mortality depending on the trophic state and the successional stage of the plankton community. In the winter bloom situation, low fluorescence viruses, the most abundant virus-like particle (VLP) subpopulation comprising mostly bacteriophages, were negatively affected by lowered pH with nutrient addition, while the bacterial host abundance was stimulated. High fluorescence viruses, containing cyanophages, were stimulated by OA regardless of the nutrient conditions, while cyanobacteria of the genus Synechococcus were negatively affected by OA. Moreover, the abundance of very high fluorescence viruses infecting small haptophytes tended to be lower under acidification while their putative hosts' abundance was enhanced, suggesting a direct and negative effect of OA on viral–host interactions. In the oligotrophic summer situation, we found a stimulating effect of OA on total viral abundance and the viral populations, suggesting a cascading effect of the elevated pCO2 stimulating autotrophic and heterotrophic production. In winter, viral lysis accounted for 30 ± 16% of the loss of bacterial standing stock per day (VMMBSS) under increased pCO2 compared to 53 ± 35% in the control treatments, without effects of nutrient additions while in summer, OA had no significant effects on VMMBSS (35 ± 20% and 38 ± 5% per day in the OA and control treatments, respectively). We found that phage production and resulting organic carbon release rates significantly reduced under OA in the nutrient replete winter situation, but it was also observed that high nutrient loads lowered the negative effect of OA on viral lysis, suggesting an antagonistic interplay between these two major global ocean stressors in the Anthropocene. In summer, however, viral-mediated carbon release rates were lower and not affected by lowered pH. Eutrophication consistently stimulated viral production regardless of the season or initial conditions. Given the relevant role of viruses for marine carbon cycling and the biological carbon pump, these two anthropogenic stressors may modulate carbon fluxes through their effect on viruses at the base of the pelagic food web in a future global change scenario
Descripción19 pages, 4 figures, 4 tables, supplementary material https://doi.org/10.3389/fmicb.2021.635821.-- The original contributions presented in the study are included in the article/Supplementary Materials, further inquiries can be directed to the corresponding authors
Versión del editorhttps://doi.org/10.3389/fmicb.2021.635821
URIhttp://hdl.handle.net/10261/239040
DOI10.3389/fmicb.2021.635821
E-ISSN1664-302X
Aparece en las colecciones: (ICM) Artículos




Ficheros en este ítem:
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

1
checked on 19-abr-2024

SCOPUSTM   
Citations

6
checked on 06-may-2024

WEB OF SCIENCETM
Citations

5
checked on 28-feb-2024

Page view(s)

78
checked on 14-may-2024

Download(s)

123
checked on 14-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons