Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/205255
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Myriocin‐induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition and heat tolerance

AutorRández Gil, Francisca CSIC ORCID; Prieto Alamán, José Antonio CSIC ORCID; Rodríguez Puchades, Alejandro; Casas, Josefina CSIC ORCID ; Sentandreu, Vicente; Estruch, Francisco
Palabras claveSaccharomyces cerevisiae
Baker’s yeast
Heat-stress
Sphingolipid
Phospholipid
Sphingoid bases
Triacylgliceride
Ploidy level
Fecha de publicación25-mar-2020
EditorSociety for Applied Microbiology
CitaciónMicrobial Biotechnology 13(4): 1066-1081 (2020)
ResumenThe modification of lipid composition allows cells to adjust membrane biophysical properties in response to changes in environmental temperature. Here, we use adaptive laboratory evolution (ALE) in the presence of myriocin, a sphingolipid (SLs) biosynthesis inhibitor, to remodel the lipid profile of an industrial yeast strain (LH) of Saccharomyces cerevisiae. The approach enabled to obtain a heterogeneous population (LHev) of myriocin‐tolerant evolved clones characterized by its growth capacity at high temperature. Myriocin exposure also caused tolerance to soraphen A, an inhibitor of the acetyl‐CoA carboxylase Acc1, the rate‐limiting enzyme in fatty acid de novo production, supporting a change in lipid metabolism during ALE. In line with this, characterization of two randomly selected clones, LH03 and LH09, showed the presence of lipids with increased saturation degree and reduced acyl length. In addition, the clone LH03, which displays the greater improvement in fitness at 40°C, exhibited higher SL content as compared with the parental strain. Analysis of the LH03 and LH09 genomes revealed a loss of chromosomes affecting genes that have a role in fatty acid synthesis and elongation. The link between ploidy level and growth at high temperature was further supported by the analysis of a fully isogenic set of yeast strains with ploidy between 1N and 4N which showed that the loss of genome content provides heat tolerance. Consistent with this, a thermotolerant evolved population (LH40°) generated from the parental LH strain by heat‐driven ALE exhibited a reduction in the chromosome copy number. Thus, our results identify myriocin‐driven evolution as a powerful approach to investigate the mechanisms of acquired thermotolerance and to generate improved strains.
Versión del editorhttps://doi.org/10.1111/1751-7915.13555
URIhttp://hdl.handle.net/10261/205255
E-ISSN1751-7915
Aparece en las colecciones: (IATA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
MicrobBiotech2020-Randez.pdfArtículo principal927,11 kBAdobe PDFVista previa
Visualizar/Abrir
MICBIOTECH2020-Randez-postprint.pdfVersion autor + material suplementario1,43 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

169
checked on 13-may-2024

Download(s)

276
checked on 13-may-2024

Google ScholarTM

Check


Este item está licenciado bajo una Licencia Creative Commons Creative Commons