Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/194735
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Atmospheric Effects of > 30-keV Energetic Electron Precipitation in the Southern Hemisphere Winter during 2003

AutorPettit, J.M.; Randall, C.E.; Peck, E.D.; Marsh, Daniel R.; van de Kamp, M.; Fang, X.; Harvey, V.L.; Rodger, C.J.; Funke, Bernd CSIC ORCID
Palabras claveElectron precipitation
Middle atmosphere
Geomagnetic storms
NOx production
WACCM
Mesosphere
Fecha de publicación30-oct-2019
EditorAmerican Geophysical Union
CitaciónJournal of Geophysical Research - Part A - Space Physics
ResumenThe atmospheric effects of precipitating electrons are not fully understood, and uncertainties are large for electrons with energies greater than ~30 keV. These electrons are underrepresented in modeling studies today, primarily because valid measurements of their precipitating spectral energy fluxes are lacking. This paper compares simulations from the Whole Atmosphere Community Climate Model (WACCM) that incorporated two different estimates of precipitating electron fluxes for electrons with energies greater than 30 keV. The estimates are both based on data from the Polar Orbiting Environmental Satellite Medium Energy Proton and Electron Detector (MEPED) instruments but differ in several significant ways. Most importantly, only one of the estimates includes both the 0° and 90° telescopes from the MEPED instrument. Comparisons are presented between the WACCM results and satellite observations poleward of 30°S during the austral winter of 2003, a period of significant energetic electron precipitation. Both of the model simulations forced with precipitating electrons with energies >30 keV match the observed descent of reactive odd nitrogen better than a baseline simulation that included auroral electrons, but no higher energy electrons. However, the simulation that included both telescopes shows substantially better agreement with observations, particularly at midlatitudes. The results indicate that including energies >30 keV and the full range of pitch angles to calculate precipitating electron fluxes is necessary for improving simulations of the atmospheric effects of energetic electron precipitation. ©2019. American Geophysical Union. All Rights Reserved.
Versión del editorhttp://dx.doi.org/10.1029/2019JA026868
URIhttp://hdl.handle.net/10261/194735
DOI10.1029/2019JA026868
ISSN2169-9380
Aparece en las colecciones: (IAA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
IAA_2019_JGR_A.pdf23,09 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

25
checked on 21-abr-2024

WEB OF SCIENCETM
Citations

23
checked on 24-feb-2024

Page view(s)

314
checked on 26-abr-2024

Download(s)

300
checked on 26-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.