Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/116706
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus

AutorSinger, Wibke; Zuccotti, Annalisa; Schimmang, Thomas CSIC ORCID; Rüttiger, Lukas; Knipper, Marlies
Palabras claveStress
Hyperacusis
Arc
Ribbon synapse
Behavioral animal model
Tinnitus
Fecha de publicación2013
EditorSpringer Nature
CitaciónMolecular Neurobiology 47(1): 261-279 (2013)
ResumenIncreasing evidence shows that hearing loss is a risk factor for tinnitus and hyperacusis. Although both often coincide, a causal relationship between tinnitus and hyperacusis has not been shown. Currently, tinnitus and hyperacusis are assumed to be caused by elevated responsiveness in subcortical circuits. We examined both the impact of different degrees of cochlear damage and the influence of stress priming on tinnitus induction. We used (1) a behavioral animal model for tinnitus designed to minimize stress, (2) ribbon synapses in inner hair cells (IHCs) as a measure for deafferentation, (3) the integrity of auditory brainstem responses (ABR) to detect differences in stimulus-evoked neuronal activity, (4) the expression of the activity-regulated cytoskeletal protein, Arc, to identify long-lasting changes in network activity within the basolateral amygdala (BLA), hippocampal CA1, and auditory cortex (AC), and (5) stress priming to investigate the influence of corticosteroid on trauma-induced brain responses. We observed that IHC ribbon loss (deafferentation) leads to tinnitus when ABR functions remain reduced and Arc is not mobilized in the hippocampal CA1 and AC. If, however, ABR waves are functionally restored and Arc is mobilized, tinnitus does not occur. Both central response patterns were found to be independent of a profound threshold loss and could be shifted by the corticosterone level at the time of trauma. We, therefore, discuss the findings in the context of a history of stress that can trigger either an adaptive or nonadaptive brain response following injury. © 2012 Springer Science+Business Media New York.
Descripciónet al.
URIhttp://hdl.handle.net/10261/116706
DOI10.1007/s12035-012-8372-8
Identificadoresdoi: 10.1007/s12035-012-8372-8
issn: 0893-7648
e-issn: 1559-1182
Aparece en las colecciones: (IBGM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

104
checked on 11-may-2024

WEB OF SCIENCETM
Citations

98
checked on 26-feb-2024

Page view(s)

216
checked on 15-may-2024

Download(s)

92
checked on 15-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.