Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/107900
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Cytometric evidence reconciling the toxicity and usefulness of CTC as a marker of bacterial activity

AutorGasol, Josep M. CSIC ORCID ; Arístegui, Javier
Palabras claveSyto13
Cell sorting
Bacterial activity
Flow cytometry
Fecha de publicación19-ene-2007
EditorInter Research
CitaciónAquatic Microbial Ecology 46: 71-83 (2007)
ResumenTo understand the opposing views on the utility of the CTC method, we examined bacterial abundance over incubations with the fluorogenic tetrazolium dye CTC (5-cyano-2,3-ditolyl tetrazolium chloride) and inspected the flow cytometric signatures of bacteria dually labeled with a DNA stain (Syto13) and CTC. Incubation of a marine plankton sample with CTC produced positive cells up to a stable value, reached in <1 h, while the red fluorescence of the granules increased for at least an extra hour. Incubation also produced a decrease in cell abundance of 22 % after 30 min in the presence of 5 mM CTC. The decrease was a function of CTC concentration and incubation time, and particularly affected bacteria with high nucleic acid content. Flow cytometric inspection of a double-stained (CTC and Syto13) sample showed that after 15 min of incubation, particles appeared having both red (CTC+) and green (DNA+) staining. Afterwards, other particles appeared that maintained the same light scatter properties and the red fluorescence, but that lost all green fluorescence. While the number of particles with double staining stabilized after about 1 h, particles with red but without DNA staining increased for at least 100 min. Simultaneously, the classic determination of CTC+ cells (observing only the red signal of the particles) increased as reported elsewhere. We interpreted these patterns as evidence of CTF (the formazan derivative of CTC) particles growing in the bacterial cells until they are so large that they break up the cells, after which they remain present as CTF granules with no associated cellular material. Microscopic or flow cytometric enumeration of red particles might still be a good indication of the percentage of bacterial cells having taken up and reduced the activity probe, but flow cytometric cell sorting of red particles based only on scatter and red fluorescence signals will select CTF particles without associated cellular material. Our results help reconcile the ecologically sound results and the CTC toxicity evidence currently reported in the literature, and lead to a warning against interpretations of cell sorting of CTC+ particles for phylogenetic or activity studies based only on red or orange fluorescence. © Inter-Research 2007
Descripción13 pages, 6 figures, 1 table
Versión del editorhttps://doi.org/10.3354/ame046071
URIhttp://hdl.handle.net/10261/107900
DOI10.3354/ame046071
Identificadoresdoi: 10.3354/ame046071
issn: 0948-3055
e-issn: 1616-1564
Aparece en las colecciones: (ICM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Gasol_et_al_2007.pdf305,29 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

37
checked on 03-may-2024

WEB OF SCIENCETM
Citations

38
checked on 17-feb-2024

Page view(s)

394
checked on 12-may-2024

Download(s)

207
checked on 12-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.