Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/97674
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato

AutorSetien, Igor; Vega-Mas, Izargi; Celestino, Natalia; Calleja Cervantes, María Erendira; González-Murua, Carmen; Estavillo, José María; González-Moro, María B.
Palabras claveSolanum lycopersicum Mill
TCA cycle
Isocitrate dehydrogenase
Glutamine synthetase
Glutamate dehydrogenase
Ammonium nutrition
Fecha de publicación21-dic-2014
EditorElsevier
CitaciónJournal of Plant Physiology 171(5): 49-63 (2014)
ResumenPlant ammonium tolerance has been associated with the capacity to accumulate large amounts of ammonium in the root vacuoles, to maintain carbohydrate synthesis and especially with the capacity of maintaining high levels of inorganic nitrogen assimilation in the roots. The tricarboxylic acid cycle (TCA) is considered a cornerstone in nitrogen metabolism, since it provides carbon skeletons for nitrogen assimilation. The hypothesis of this work was that the induction of anaplerotic routes of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH) and malic enzyme (NAD-ME) would enhance tolerance to ammonium nutrition. An experiment was established with tomato plants (Agora Hybrid F1) grown under different ammonium concentrations. Growth parameters, metabolite contents and enzymatic activities related to nitrogen and carbon metabolism were determined. Unlike other tomato cultivars, tomato Agora Hybrid F1 proved to be tolerant to ammonium nutrition. Ammonium was assimilated as a biochemical detoxification mechanism, thus leading to the accumulation of Gln and Asn as free amino acids in both leaves and roots as an innocuous and transitory store of nitrogen, in addition to protein synthesis. When the concentration of ammonium in the nutrient solution was high, the cyclic operation of the TCA cycle seemed to be interrupted and would operate in two interconnected branches to provide α-ketoglutarate for ammonium assimilation: one branch supported by malate accumulation and by the induction of anaplerotic PEPC and NAD-ME in roots and MDH in leaves, and the other branch supported by stored citrate in the precedent dark period. © 2013 Elsevier GmbH.
URIhttp://hdl.handle.net/10261/97674
DOI10.1016/j.jplph.2013.10.021
Identificadoresdoi: 10.1016/j.jplph.2013.10.021
issn: 0176-1617
Aparece en las colecciones: (IDAB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

43
checked on 01-may-2024

WEB OF SCIENCETM
Citations

39
checked on 25-feb-2024

Page view(s)

360
checked on 07-may-2024

Download(s)

105
checked on 07-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.