Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/353047
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Europium and Terbium doped apatite obtained by hydrothermal transformation of biogenic calcium carbonate from oyster shells

AutorPuentedura, P.; Fernández-Penas, Raquel; Cano Plá, Sandra María; Fernández-Sánchez, Jorge F.; Álvarez-Lloret, Pedro; Torres-Mansilla, Adriana; Triunfo, Carla; Maoloni, Gabriele; Cölfen, Helmut; Falini, Giuseppe; Gómez-Morales, Jaime CSIC ORCID
Fecha de publicación30-jul-2023
EditorAssociazione Italiana Cristallografia
CitaciónThe International Conference on Crystal Growth and Epitaxy-ICCGE-20 (2023)
ResumenSeashell wastes from aquaculture and canning industries represent an important environmental issue nowadays [1]. Shells are made of calcium carbonate (CaCO3) with a low content of proteins and polysaccharides (1-5 wt.%). The valorization of this waste by using it as a raw material for the production of calcium phosphates may have a positive impact both environmental and economic, thus contributing to the sustainability of this important sector. In some biomedical industries, there is a growing demand for calcium phosphate (apatite) crystals including nanosized, micron-sized, and larger sizes. This work is devoted to producing functional apatite nanocrystals, eg. doped with luminescent lanthanide (Ln3+) ions [2,3], using oyster shells (Mg-calcite, 5 wt.% Mg) from the species Crassostrea gigas as a Ca source. Experiments were performed by a one-pot hydrothermal method using KH2PO4 as a P reagent, a P/CaCO3 ratio of 0.6 (stoichiometric respect to hydroxyapatite), and either Eu3+ or Tb3+ (10and 20 mM). Characterization by XRD, FTIR, Raman, and ICP revealed the full transformation of biogenic CaCO3 particles into doped apatite. It was obtained at 160 ºC with (Ca+Ln)/P ratios 1.72 and 1.68 when adding Eu3+ and Tb3+ (10 mM) and 1.88 and 1.99 when the lanthanide concentration in the solution increased to 20 mM. In both cases, nanocrystals displayed needleor plate-like morphologies and polydisperse size distribution. Luminescence characterization of the nanoparticles showed different luminescence spectra depending on the doping ion. They displayed excitation and emission wavelengths of 395nm and 616 nm for the Eu3+-, and 372 and 543 nm for the Tb3+-doped samples. The relative luminescence intensities correlated well with their Ln3+ content while luminescence lifetimes (up to 1600 ¿s) were higher for Tb3+-doped apatites. Overall, the nanoparticles showed notable luminescent behavior and could find application as luminescent probes for bioimaging or nanophosphors for the electronic industry. Acknowledgements: Grant ref. PCI2020-112108 is funded by MCIN/AEI/10.13039/501100011033 (Spain) and the European Union "NextGenerationEU"/PRTR". PCI2020-112108 is part of the project CASEAWA of ERA-NET Cofund BlueBio H2020.
DescripciónPóster presentado en The International Conference on Crystal Growth and Epitaxy-ICCGE-20, Naples (Italy), 30-july 4 august 2023
URIhttp://hdl.handle.net/10261/353047
Aparece en las colecciones: (IACT) Comunicaciones congresos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVisualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

6
checked on 22-may-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.