Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/350538
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Hydrogen-Induced Reduction Improves the Photoelectrocatalytic Performance of Titania

AutorSánchez-Sánchez, Carlos CSIC ORCID ; Muñoz, Roberto CSIC ORCID; Alfonso-González, Elena; Barawi, Mariam; Martínez, José I. CSIC ORCID ; López-Elvira, Elena ; Sánchez-Santolino, Gabriel; Shibata, Naoya; Ikuhara, Yuichi; Ellis, Gary J.; García-Hernández, Mar CSIC ORCID ; López, María Francisca CSIC ORCID ; Peña O'Shea, Víctor A. de la; Martín-Gago, José A. CSIC ORCID
Palabras claveEtching
Hydrogen
Oxides
Plasma
Scanning tunneling microscopy
Fecha de publicación20-feb-2024
EditorAmerican Chemical Society
CitaciónACS Applied Energy Materials 2024
ResumenOne of the main challenges to expand the use of titanium dioxide (titania) as a photocatalyst is related to its large band gap energy and the lack of an atomic scale description of the reduction mechanisms that may tailor the photocatalytic properties. We show that rutile TiO2 single crystals annealed in the presence of atomic hydrogen experience a strong reduction and structural rearrangement, yielding a material that exhibits enhanced light absorption, which extends from the ultraviolet to the near-infrared (NIR) spectral range, and improved photoelectrocatalytic performance. We demonstrate that both magnitudes behave oppositely: heavy/mild plasma reduction treatments lead to large/negligible spectral absorption changes and poor/enhanced (×10) photoelectrocatalytic performance, as judged from the higher photocurrent. To correlate the photoelectrochemical performance with the atomic and chemical structures of the hydrogen-reduced materials, we have modeled the process with in situ scanning tunneling microscopy measurements, which allow us to determine the initial stages of oxygen desorption and the desorption/diffusion of Ti atoms from the surface. This multiscale study opens a door toward improved materials for diverse applications such as more efficient rutile TiO2-based photoelectrocatalysts, green photothermal absorbers for solar energy applications, or NIR-sensing materials.
Versión del editorhttps://doi.org/10.1021/acsaem.3c02707
URIhttp://hdl.handle.net/10261/350538
DOI10.1021/acsaem.3c02707
ISSN2574-0962
Aparece en las colecciones: (ICMM) Artículos




Ficheros en este ítem:
Mostrar el registro completo

CORE Recommender

Page view(s)

26
checked on 30-abr-2024

Download(s)

16
checked on 30-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons