Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/349421
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Upscaling Thermoelectrics: Micron-Thick, Half-a-Meter-Long Carbon Nanotube Films with Monolithic Integration of p- and n-Legs

AutorZapata Arteaga, Osnat; Dörling, Bernhard CSIC ORCID; Álvarez Corzo, Iván; Xu, Kai; Reparaz, J. Sebastian; Campoy Quiles, Mariano CSIC ORCID
Palabras claveOrganic thermoelectrics
CNT
Processing
Large scale
Thermoelectric generator
Doping
Fecha de publicación5-mar-2024
EditorAmerican Chemical Society
CitaciónACS Applied Electronic Materials: 10.1021/acsaelm.3c01671 (2024)
ResumenIn order for organic thermoelectrics to successfully establish their own niche as energy-harvesting materials, they must reach several crucial milestones, including high performance, long-term stability, and scalability. Performance and stability are currently being actively studied, whereas demonstrations of large-scale compatibility are far more limited and for carbon nanotubes (CNTs) are still missing. The scalability challenge includes material-related economic considerations as well as the availability of fast deposition methods that produce large-scale films that simultaneously satisfy the thickness constraints required for thermoelectric modules. Here we report on true solutions of CNTs that form gels upon air exposure, which can then be dried into micron-thick films. The CNT ink can be extruded using a slot-shaped nozzle into a continuous film (more than half a meter in the present paper) and patterned into alternating n- and p-type components, which are then folded to obtain the finished thermoelectric module. Starting from a given n-type film, differentiation between the n and p components is achieved by a simple postprocessing step that involves a partial oxidation reaction and neutralization of the dopant. The presented method allows the thermoelectric legs to seamlessly interconnect along the continuous film, thus avoiding the need for metal electrodes, and, most importantly, it is compatible with large-scale printing processes. The resulting thermoelectric legs retain 80% of their power factor after 100 days in air and about 30% after 300 days. Using the proposed methodology, we fabricate two thermoelectric modules of 4 and 10 legs that can produce maximum power outputs of 1 and 2.4 μW, respectively, at a temperature difference ΔT of 46 K.
DescripciónThis article is part of the Advanced Thermoelectric Materials and Devices special issue.
Versión del editorhttp://doi.org/10.1021/acsaelm.3c01671
URIhttp://hdl.handle.net/10261/349421
E-ISSN2637-6113
Aparece en las colecciones: (ICMAB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Zapata_ACSApplElectrMat_2024_editorial.pdfArtículo principal7,5 MBAdobe PDFVista previa
Visualizar/Abrir
Zapata_ACSApplElectrMat_2024_suppl_editorial.pdfInformación complementaria25,57 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

18
checked on 27-abr-2024

Download(s)

2
checked on 27-abr-2024

Google ScholarTM

Check


Este item está licenciado bajo una Licencia Creative Commons Creative Commons