Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/344319
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Increasing contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns

AutorYan, Chao; Tham, Yee Jun; Nie, Wei; Xia, Men; Wang, Haichao; Guo, Yishuo; Ma, Wei; Zhan, Junlei; Hua, Chenjie; Li, Yuanyuan; Deng, Chenjuan; Li, Yiran; Zheng, Feixue; Chen, Xin; Li, Qinyi CSIC ORCID; Zhang, Gen; Mahajan, Anoop S.; Cuevas, Carlos A. CSIC ORCID; Huang, Dan Dan; Wang, Zhe; Sun, Yele; Saiz-Lopez, A. CSIC ORCID; Bianchi, Federico; Kerminen, Veli Matti; Worsnop, Douglas R.; Donahue, Neil M.; Jiang, Jingkun; Liu, Yongchun; Ding, Aijun; Kulmala, Markku
Fecha de publicación1-nov-2023
EditorNature Publishing Group
CitaciónNature Geoscience 16: 975–981 (2023)
ResumenNitrate comprises the largest fraction of fine particulate matter in China during severe haze. Consequently, strict control of nitrogen oxides (NOx) emissions has been regarded as an effective measure to combat air pollution. However, this notion is challenged by the persistent severe haze pollution observed during the COVID-19 lockdown when NOx levels substantially declined. Here we present direct field evidence that diminished nitrogen monoxide (NO) during the lockdown activated nocturnal nitrogen chemistry, driving severe haze formation. First, dinitrogen pentoxide (N2O5) heterogeneous reactions dominate particulate nitrate (pNO3−) formation during severe pollution, explaining the higher-than-normal pNO3− fraction in fine particulate matter despite the substantial NOx reduction. Second, N2O5 heterogeneous reactions provide a large source of chlorine radicals on the following day, contributing drastically to the oxidation of volatile organic compounds, and thus the formation of oxygenated organic molecules and secondary organic aerosol. Our findings highlight the increasing importance of such nocturnal nitrogen chemistry in haze formation caused by NOx reduction, motivating refinements to future air pollution control strategies.
Versión del editorhttps://doi.org/10.1038/s41561-023-01285-1
URIhttp://hdl.handle.net/10261/344319
DOI10.1038/s41561-023-01285-1
ISSN1752-0894
Aparece en las colecciones: (IQF) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
SUPPLEMENTARY INFORMATION.pdfSupplementary information801,15 kBAdobe PDFVista previa
Visualizar/Abrir
REVISE~1.DOC3,49 MBMicrosoft WordVisualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

5
checked on 28-abr-2024

Page view(s)

18
checked on 01-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.