Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/341400
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Supporting Information Self-supported NiO/CuO electrodes to boost urea oxidation in direct urea fuel cells

AutorYang, Linlin; He, Ren; Wang, Xiang; Yang, Tingting; Zhang, Ting CSIC; Zuo, Yong; Lu, Xuan; Liang, Zhifu; Li, Junshan; Arbiol, Jordi CSIC ORCID CVN; Martínez-Alanis, Paulina R.; Qi, Xueqiang; Cabot, Andreu
Fecha de publicaciónoct-2023
EditorElsevier
CitaciónYang, Linlin; He, Ren; Wang, Xiang; Yang, Tingting; Zhang, Ting; Zuo, Yong; Lu, Xuan; Liang, Zhifu; Li, Junshan; Arbiol, Jordi; Martínez-Alanis, Paulina R.; Qi, Xueqiang; Cabot, Andreu; 2023; Supporting Information Self-supported NiO/CuO electrodes to boost urea oxidation in direct urea fuel cells [Dataset]; Elsevier; https://doi.org/10.1016/j.nanoen.2023.108714
Descripción26 pages. -- Fig. S1. XRD pattern of Cu(OH)2 collected from the sonication of the Cu(OH)2@CuM electrode. -- Fig. S2. XRD pattern of Ni(OH)2/Cu(OH)2 collected from the sonication of the Ni(OH)2/Cu(OH)2@CuM electrode. -- Fig. S3. XRD pattern of NiO/CuO collected from the sonication of the NiO/CuO@CuM electrode. -- Fig.S4. The diffraction spots pattern analysis of Fig 2c. -- Fig. S5. HRTEM images and corresponding indexed FFT of a NiO/CuO nanostructure. -- Fig. S6. HRTEM images and corresponding indexed FFT of a NiO/CuO nanostructure. -- Fig. S7. (a) SEM image of CuO@CuM. The inset shows an optical image of a self-supported electrode. (b) XRD pattern of CuO collected from the sonication of the CuO@CuM electrode. -- Fig. S8. HAADF STEM image and EELS elemental maps of Cu and O of CuO nanostructures. -- Fig. S9. SEM image of Ni(OH)2 directly grown on a copper mesh. The inset shows an optical image of the electrode. -- Fig. S10. SEM image of Ni(OH)2 directly grown on a CuM with the hydrothermal method. The inset shows an optical image of the electrode. (a) Hydrothermal method with the precursor of 1 mmol nickel nitrate, 2 mmol NaOH, 20 ml ethylene glycol and 4 ml H2O, as well as one piece of the cleaned CuM at 100 C for 300 min. (b) Hydrothermal method with the precursor of 1 mmol nickel acetylacetonate, 2 mmol urea, 1 mL butylamine, 20 ml ethylene glycol and 4 ml H2O as well as one piece of the cleaned CuM at 200 C for 180 min. -- Fig. S11. Survey XPS spectra of CuO@CuM and NiO/CuO@CuM. -- Fig. S12. Current density vs. urea concentration of NiO/CuO@CuM electrode at different specific applied potential. -- Fig. S13. LSV curves of NiO/CuO@CuM with the active process. -- Fig. S14. CV curves of (a) NiO/CuO@CuM, (b) Ni(OH)2/Cu(OH)2@CuM, (c) CuO@CuM, and (d) Cu(OH)2@CuM with different scan rates. -- Fig. S15. ECSA values of NiO/CuO@CuM, Ni(OH)2/Cu(OH)2@CuM, CuO@CuM, and Cu(OH)2@CuM electrode. -- Fig. S16. LSV curves of NiO/CuO@CuM electrode before and after stability measurements. -- Fig. S17. SEM image of NiO/CuO@CuM after stability measurements. -- Fig. S18. XRD pattern of NiO/CuO structure before and after stability tests. -- Fig. S19. (a) Cu 2p and (b) Ni 2p high-resolution XPS spectra of self-supported NiO/CuO@CuM electrodes after stability tests. -- Fig. S20. Raman spectra of NiO/CuO@CuM p-p heterojunction electrode (a) before and (b) after UOR stability test. -- Fig. 21. (a) SEM image of Ni(OH)2/CuO@CuM. (b) XRD pattern of Ni(OH)2/CuO nanostructure. (c) LSV curves (d) Tafel slopes of different electrodes in 1.0 M KOH with 0.5 M urea. (e) CV curves of Ni(OH)2/CuO@CuM electrode. (f) Cdl values of different electrodes. -- Fig. S22. (a) Top-view and (b) side-view of optimized structures of NiOOH/CuO heterojunction. -- Fig. S23. (a) Top-view and (b) side-view of optimized structures of NiOOH. (c) Top-view and (d) side-view of optimized structures of CuO. -- Fig. S24. PDOS and d band center of (a) pristine CuO, (b) NiOOH and (c) CuO/NiOOH heterojunctions with DFT+U (up) and DFT+U-D3 methods (down), respectively. -- Fig. S25. The slices of electron density difference of urea adsorbed on (a) pristine CuO, and (b) NiOOH. The contour around the atoms represents electron accumulation (red) or electron depletion (blue). The balls with various colors mean different atoms: red-O, gray-C, white-H, orange-Cu, dark blue-N, and watery blue-Ni. -- Fig. S26. (a) Bond length (Å) of urea molecule adsorbed on the NiOOH/CuO heterojunction surface. (b) Bond length (Å) of free urea molecule. -- Fig. S27. Slices of electron density difference of CO2 adsorbed on (a) pristine CuO, (b) NiOOH, and (c) NiOOH/CuO heterojunction. The contour around the atoms represents electron accumulation (red) or electron depletion (blue). The balls with various colors mean different atoms: red-O, gray-C, white-H, orange-Cu, and watery blue-Ni. -- Fig. S28. (a) The structure of DUFCs with an ion exchange membrane (IEM), (b) voltage-current and power-current curves of DUFCs with different self-supported anodes electrodes, (c) the open circuit voltage and (d) power density of DUFCs with different self-supported anodes electrodes. -- Table S1. The analysis results of the diffraction spots pattern of Fig. 2c. -- Table S2. Elements ratio of NiO/CuO@CuM and CuO@CuM by EDS and XPS techniques. -- Table S3. EIS fitting results of NiO/CuO@CuM, Ni(OH)2/Cu(OH)2@CuM, CuO@CuM and Cu(OH)2/@CuM. -- Table S4. Comparison of electrochemical UOR performance of this work with other reported electrodes. NF = nickel foam; GC = glassy carbon, CP = carbon paper, CC = carbon cloth. -- Table S5. Bond lengths of Cu-O and Ni-O at the bulk and heterojunction interface. -- Table S6. Comparison of DUFC performance with NiO/CuO@CuM as the anode and previously reported electrocatalysts.
Versión del editorhttps://doi.org/10.1016/j.nanoen.2023.108714
URIhttp://hdl.handle.net/10261/341400
DOI10.1016/j.nanoen.2023.108714
ReferenciasYang, Linlin; He, Ren; Wang, Xiang; Yang, Tingting; Zhang, Ting; Zuo, Yong; Lu, Xuan; Liang, Zhifu; Li, Junshan; Arbiol, Jordi; Martínez-Alanis, Paulina R.; Qi, Xueqiang; Cabot, Andreu. Self-supported NiO/CuO electrodes to boost urea oxidation in direct urea fuel cells. https://doi.org/10.1016/j.nanoen.2023.108714. http://hdl.handle.net/10261/341390
Aparece en las colecciones: (CIN2) Conjuntos de datos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Acceso_restringido.pdf108,79 kBAdobe PDFVista previa
Visualizar/Abrir
README.txt8,1 kBTextVisualizar/Abrir
Mostrar el registro completo

CORE Recommender
fair
fair eva

Page view(s)

27
checked on 30-abr-2024

Download(s)

17
checked on 30-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.