Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/334518
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Ratiometric Nanothermometer Based on a Radical Excimer for In Vivo Sensing

AutorBlasi, Davide CSIC ORCID; Gonzalez Pato, Nerea ; Rodríguez Rodríguez, Xavier; Díez Zabala, Íñigo; Srinivasan, Sumithra Y.; Camarero, Núria; Esquivias, Oriol; Roldán, Mònica; Guasch, Judith; Laromaine, Anna CSIC ORCID; Gorostiza, Pau; Veciana, Jaume CSIC ORCID CVN; Ratera, Immaculada
Palabras claveCaenorhabditis elegans
Excimer emission
In vivo sensing
Luminescence; organic radical nanoparticles
Ratiometric nanothermometers
Trityl radicals
Fecha de publicación9-ago-2023
EditorWiley-VCH
CitaciónSmall 19(32): 2207806 (2023)
ResumenRatiometric fluorescent nanothermometers with near-infrared emission play an important role in in vivo sensing since they can be used as intracellular thermal sensing probes with high spatial resolution and high sensitivity, to investigate cellular functions of interest in diagnosis and therapy, where current approaches are not effective. Herein, the temperature-dependent fluorescence of organic nanoparticles is designed, synthesized, and studied based on the dual emission, generated by monomer and excimer species, of the tris(2,4,6-trichlorophenyl)methyl radical (TTM) doping organic nanoparticles (TTMd-ONPs), made of optically neutral tris(2,4,6-trichlorophenyl)methane (TTM-αH), acting as a matrix. The excimer emission intensity of TTMd-ONPs decreases with increasing temperatures whereas the monomer emission is almost independent and can be used as an internal reference. TTMd-ONPs show a great temperature sensitivity (3.4% K-1 at 328 K) and a wide temperature response at ambient conditions with excellent reversibility and high colloidal stability. In addition, TTMd-ONPs are not cytotoxic and their ratiometric outputs are unaffected by changes in the environment. Individual TTMd-ONPs are able to sense temperature changes at the nano-microscale. In vivo thermometry experiments in Caenorhabditis elegans (C. elegans) worms show that TTMd-ONPs can locally monitor internal body temperature changes with spatio-temporal resolution and high sensitivity, offering multiple applications in the biological nanothermometry field.
Versión del editorhttp://doi.org/10.1002/smll.202207806
URIhttp://hdl.handle.net/10261/334518
DOI10.1002/smll.202207806
ISSN1613-6810
Aparece en las colecciones: (ICMAB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Blasi_Small_2023_editorial.pdfArtículo principal1,72 MBAdobe PDFVista previa
Visualizar/Abrir
Blasi_Small_2023_suppl_editorial.pdfInformación complementaria1,45 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

3
checked on 27-mar-2024

SCOPUSTM   
Citations

6
checked on 19-abr-2024

WEB OF SCIENCETM
Citations

7
checked on 29-feb-2024

Page view(s)

26
checked on 28-abr-2024

Download(s)

13
checked on 28-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons