Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/306248
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorRizzo, Daniel J.es_ES
dc.contributor.authorShabani, Saraes_ES
dc.contributor.authorJessen, Bjarke S.es_ES
dc.contributor.authorZhang, Jines_ES
dc.contributor.authorMcLeod, Alexander S.es_ES
dc.contributor.authorRubio-Verdú, Carmenes_ES
dc.contributor.authorRuta, Francesco L.es_ES
dc.contributor.authorCothrine, Matthewes_ES
dc.contributor.authorYan, Jia-Qianges_ES
dc.contributor.authorMandrus, David G.es_ES
dc.contributor.authorNagler, Stephen E.es_ES
dc.contributor.authorRubio, Angeles_ES
dc.contributor.authorHone, James C.es_ES
dc.contributor.authorDean, Cory R.es_ES
dc.contributor.authorPasupathy, Abhay N.es_ES
dc.contributor.authorBasov, D. N.es_ES
dc.date.accessioned2023-04-14T07:32:08Z-
dc.date.available2023-04-14T07:32:08Z-
dc.date.issued2022-
dc.identifier.citationNano Letters 22(5): 1946-1953 (2022)es_ES
dc.identifier.ismn10.1021/acs.nanolett.1c04579-
dc.identifier.urihttp://hdl.handle.net/10261/306248-
dc.description.abstractThe ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p–n junctions. Our STM/STS results reveal that p–n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p–n nanojunctions in 2D materials.es_ES
dc.description.sponsorshipResearch at Columbia University was supported as part of the Energy Frontier Research Center on Programmable Quantum Materials funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No DE-SC0019443. Plasmonic nano-imaging at Columbia University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No DE-SC0018426. J.Z. and A.R. were supported by the European Research Council (ERC-2015-AdG694097), the Cluster of Excellence “Advanced Imaging of Matter” (AIM) EXC 2056-390715994, funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under RTG 2247, Grupos Consolidados (IT1249-19), and SFB925 “Light induced dynamics and control of correlated quantum systems”. J.Z. and A.R. would like to acknowledge Nicolas Tancogne-Dejean and Lede Xian for fruitful discussions and also acknowledge support by the Max Planck Institute-New York City Center for Non-Equilibrium Quantum Phenomena. The Flatiron Institute is a division of the Simons Foundation. J.Z. acknowledges funding received from the European Union Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement 886291 (PeSD-NeSL). STM support was provided by the National Science Foundation via Grant DMR-2004691. C.R.-V. acknowledges funding from the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement 844271. D.G.M. acknowledges support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, Grant GBMF9069. J.Q.Y. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. S.E.N. acknowledges support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Scientific User Facilities. Work at University of Tennessee was supported by NSF Grant 180896.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/694097es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/886291es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/844271es_ES
dc.relation.ispartofNano Letterses_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.subjectScanning tunneling microscopyes_ES
dc.subjectScanning near-field optical microscopyes_ES
dc.titleNanometer-scale lateral p-n junctions in graphene/α-RuCl3 heterostructureses_ES
dc.typeartículoes_ES
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1021/acs.nanolett.1c04579es_ES
dc.identifier.e-issn1530-6984-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.contributor.funderColumbia Universityes_ES
dc.contributor.funderEnergy Frontier Research Centers (US)es_ES
dc.contributor.funderDepartment of Energy (US)es_ES
dc.contributor.funderEuropean Research Counciles_ES
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderGerman Research Foundationes_ES
dc.contributor.funderMax Planck Societyes_ES
dc.contributor.funderSimons Foundationes_ES
dc.contributor.funderFlatiron Institutees_ES
dc.contributor.funderNational Science Foundation (US)es_ES
dc.contributor.funderGordon and Betty Moore Foundationes_ES
dc.relation.csicNoes_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/100006474es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001659es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000936es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004189es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000001es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000893es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000015es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairetypeartículo-
Aparece en las colecciones: (CFM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
nanometer.pdf4,69 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

112
checked on 16-may-2024

Download(s)

68
checked on 16-may-2024

Google ScholarTM

Check


Este item está licenciado bajo una Licencia Creative Commons Creative Commons