Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/303717
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Gelatin-methacryloyl hydrogels containing turnip mosaic virus for fabrication of nanostructured materials for tissue engineering

AutorGonzález-Gamboa, Ivonne; Velázquez-Lam, Edith; Lobo-Zegers, Matías José; Frías, A.; Tavares-Negrete, Jorge Alfonso; Monroy-Borrego, Andrea; Menchaca-Arrendondo, Jorge Luis; Williams, Laura; Lunello, Pablo; Ponz Ascaso, Fernando; Álvarez, Mario Moisés; Trujillo-de Santiago, Grissel
Palabras claveGelMA
TuMV
VNP
Biofabrication
Bioprinting
Nanomesh
Nanoscaffold
Tissue engineering
Fecha de publicación2-sep-2022
EditorFrontiers Media
CitaciónFrontiers in Bioengineering and Biotechnology 10: e907601 (2022)
ResumenCurrent tissue engineering techniques frequently rely on hydrogels to support cell growth, as these materials strongly mimic the extracellular matrix. However, hydrogels often need ad hoc customization to generate specific tissue constructs. One popular strategy for hydrogel functionalization is to add nanoparticles to them. Here, we present a plant viral nanoparticle the turnip mosaic virus (TuMV), as a promising additive for gelatin methacryloyl (GelMA) hydrogels for the engineering of mammalian tissues. TuMV is a flexuous, elongated, tubular protein nanoparticle (700-750 nm long and 12-15 nm wide) and is incapable of infecting mammalian cells. These flexuous nanoparticles spontaneously form entangled nanomeshes in aqueous environments, and we hypothesized that this nanomesh structure could serve as a nanoscaffold for cells. Human fibroblasts loaded into GelMA-TuMV hydrogels exhibited similar metabolic activity to that of cells loaded in pristine GelMA hydrogels. However, cells cultured in GelMA-TuMV formed clusters and assumed an elongated morphology in contrast to the homogeneous and confluent cultures seen on GelMA surfaces, suggesting that the nanoscaffold material per se did not favor cell adhesion. We also covalently conjugated TuMV particles with epidermal growth factor (EGF) using a straightforward reaction scheme based on a Staudinger reaction. BJ cells cultured on the functionalized scaffolds increased their confluency by approximately 30% compared to growth with unconjugated EGF. We also provide examples of the use of GelMA-TuMV hydrogels in different biofabrication scenarios, include casting, flow-based-manufacture of filaments, and bioprinting. We envision TuMV as a versatile nanobiomaterial that can be useful for tissue engineering.
Descripción16 Pág.
Versión del editorhttps://doi.org/10.3389/fbioe.2022.907601
URIhttp://hdl.handle.net/10261/303717
DOI10.3389/fbioe.2022.907601
ISSN2296-4185
Aparece en las colecciones: (INIA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Gelatin_methacryloyl_hydrogels_containing.pdfartículo2,8 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

2
checked on 16-abr-2024

SCOPUSTM   
Citations

7
checked on 14-may-2024

WEB OF SCIENCETM
Citations

3
checked on 26-feb-2024

Page view(s)

49
checked on 15-may-2024

Download(s)

24
checked on 15-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons