Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/291962
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region

AutorFares, S.; Bajocco, S.; Salvati, L.; Camarretta, N.; Dupuy, J. L.; Xanthopoulos, Gavriil; Guijarro Guzmán, Mercedes; Madrigal, Javier CSIC ORCID ; Hernando Lara, Carmen; Corona, P.
Palabras claveLive fuel vegetation
Mediterranean forests
Biogenic volatile organic compounds
Plant moisture
Remote sensing
LiDAR
Fecha de publicación2017
EditorBioMed Central
CitaciónAnnals of Forest Science 74: e1 (2017)
ResumenKey message Fuel moisture and chemical content affecting live plant flammability can be measured through laboratory and field techniques, or remotely assessed. Standardization of methodologies and a better understanding of plant attributes and phenological status can improve models for fire management. Context Wildland fire management is subject to manifold sources of uncertainty. Beyond the difficulties of predicting accurately the fire behavior, uncertainty stems from incomplete understanding of ecological susceptibility to fire. Aims We aimed at reviewing current knowledge of (i) plant attributes and flammability fuel moisture and chemical content in leaves; (ii) experimental evaluation of flammability in the laboratory and in the field; and (iii) proxy evaluation of flammability vegetation cover assessment at large scale, fuel seasonality, and biomass distribution using remote sensing and Light Detection and Ranging (LiDAR) techniques. Methods We conducted a review of scientific literature from the last two decades on the three selected issues, with a specific focus on the Mediterranean region. Results We have evidenced important knowledge gaps: (i) developing standardized methodologies for laboratory- and field-scale assessment of vegetation flammability; (ii) introducing reliable approaches to test the impact of biogenic volatile organic compounds on fire spread; (iii) improving the analysis of spatiotemporal changes in vegetation dynamics, acknowledging distinctive vegetation phenological status as a relevant driver affecting leaf biomass and moisture contents; and (iv) further exploring the processes that shape fuel dynamics to understand how fuel characteristics change over time and space. Conclusion: We propose some improvements in the current knowledge of vegetation science and wildland fire ecology, aiming to generate more realistic models and effective planning in support of fire management in the Mediterranean basin. � 2017, INRA and Springer-Verlag France.
URIhttp://hdl.handle.net/10261/291962
DOI10.1007/s13595-016-0599-5
ISSN1286-4560
E-ISSN1297-966X
Aparece en las colecciones: (INIA) Artículos

Mostrar el registro completo

CORE Recommender

Page view(s)

29
checked on 23-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.