Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/280484
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Neural network assisted design of plasmonic nanostructures on superconducting transition-edge-sensors for single photon detectors

AutorRodrigo, Sergio G. CSIC ORCID; Pobes, Carlos; Sánchez Casi, Marta; Martín-Moreno, Luis CSIC ORCID ; Camón, Agustín CSIC ORCID
Fecha de publicación2022
EditorOptical Society of America
CitaciónOptics Express 30(8): 12368-12377 (2022)
ResumenTransition edge sensors (TESs) are extremely sensitive thermometers made of superconducting materials operating at their transition temperature, where small variations in temperature give rise to a measurable increase in electrical resistance. Coupled to suitable absorbers, they are used as radiation detectors with very good energy resolution in several experiments. Particularly interesting are the applications that TESs may bring to single photon detection in the visible and infrared regimes. In this work, we propose a method to enhance absorption efficiency at these wavelengths. The operation principle exploits the generation of highly absorbing plasmons on the metallic surface. Following this approach, we report nanostructures featuring theoretical values of absorption reaching 98%, at the telecom design frequency (λ = 1550 nm). The optimization process takes into account the TES requirements in terms of heat capacity, critical temperature and energy resolution leading to a promising design for an operating device. Neural networks were first trained and then used as solvers of the optical properties of the nanostructures. The neural network topology takes the geometrical parameters, the properties of materials and the wavelength of light as input, predicting the absorption spectrum at single wavelength as output. The incorporation of the material properties and the dependence with frequency was crucial to reduce the number of required spectra for training. The results are almost indistinguishable from those calculated with a commonly used numerical method in computational electromagnetism, the finite-difference time-domain algorithm, but up to 106 times faster than the numerical simulation.
Versión del editorhttps://doi.org/10.1364/OE.453952
URIhttp://hdl.handle.net/10261/280484
DOI10.1364/OE.453952
E-ISSN1094-4087
Aparece en las colecciones: (INMA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
neuradetec.pdf6,69 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

1
checked on 10-may-2024

SCOPUSTM   
Citations

2
checked on 11-may-2024

WEB OF SCIENCETM
Citations

1
checked on 26-feb-2024

Page view(s)

28
checked on 15-may-2024

Download(s)

35
checked on 15-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.