Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/266479
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Patterns of microbial abundance and heterotrophic activity along nitrogen and salinity gradients in coastal wetlands

AutorBatanero, Gema L.; Green, Andy J. CSIC ORCID ; Amat, Juan A. CSIC ORCID; Vittecoq, Marion; Suttle, Curtis A.; Reche, Isabel
Palabras claveCoastal wetlands
Heterotrophic prokaryotic abundance and production
Cyanobacteria
Viruses
Salinity
Nitrogen
Fecha de publicación17-mar-2022
EditorSpringer Nature
CitaciónAquatic Sciences 84 (2): (2022)
ResumenCoastal wetlands are valuable aquatic ecosystems with high biological productivity, which provide services such as a reduction in nitrogen loading into coastal waters and storage of organic carbon acting as carbon dioxide sinks. The predicted rise of sea level or freshwater extractions, particularly in the arid Mediterranean biome, will salinize many coastal wetlands. However, there is considerable uncertainty about how salinization will affect microbial communities and biogeochemical processes. We determined the abundance of total prokaryotes, cyanobacteria, and viruses and quantified the heterotrophic production of prokaryotes sensitive- (predominantly Bacteria) and resistant- (predominantly Archaea) to erythromycin in 112 ponds from nine coastal wetlands. We explored the main drivers of prokaryotic abundance and heterotrophic production using generalized linear models (GLMs). The best GLM, including all the wetlands, indicated that the concentration of total dissolved nitrogen (TDN) positively affected the total abundance of prokaryotes and the heterotrophic erythromycin-resistant (ery-R) production. In contrast, heterotrophic erythromycin-sensitive (ery-S) production was negatively related to TDN. This negative relationship appeared to be mediated by salinity and virus abundance. Heterotrophic ery-S production declined as salinity and virus abundance increased. Consequently, we observed a switch from heterotrophic ery-S production towards ery-R production as salinity and virus abundance increased. Our results imply that microbial activity will change from heterotrophic bacterial-dominated processes to archaeal-dominated processes with anthropogenic nitrogen and salinization increases. However, more studies are required to link the mineralization rates of dissolved nitrogen and organic carbon with specific archaeal taxa to enable more accurate predictions on future scenarios in coastal wetlands.
Versión del editorhttps://doi.org/10.1007/s00027-022-00855-6
URIhttp://hdl.handle.net/10261/266479
DOI10.1007/s00027-022-00855-6
ISSN1015-1621
E-ISSN1420-9055
Aparece en las colecciones: (EBD) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
microbial_wetlands.pdfArtículo principal1,68 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

2
checked on 25-abr-2024

WEB OF SCIENCETM
Citations

2
checked on 24-feb-2024

Page view(s)

38
checked on 27-abr-2024

Download(s)

40
checked on 27-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons