Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/265291
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Linear scaling quantum transport methodologies

AutorFan, Zheyong; Garcia, Jose H. CSIC ORCID; Cummings, Aron W. CSIC ORCID; Barrios Vargas, José Eduardo CSIC ORCID; Panhans, Michel; Harju, Ari; Ortmann, F. CSIC ORCID; Roche, Stephan CSIC ORCID
Palabras claveQuantum transport
2D materials
Numerical methods
Topological materials
Kernel polynomials method
Time-dependent Schrödinger equation
Fecha de publicación7-abr-2021
EditorElsevier
CitaciónPhysics Reports 903: 1-69 (2021)
ResumenIn recent years, predictive computational modeling has become a cornerstone for the study of fundamental electronic, optical, and thermal properties in complex forms of condensed matter, including Dirac and topological materials. The simulation of quantum transport in realistic models calls for the development of linear scaling, or order-N, numerical methods, which then become enabling tools for guiding experimental research and for supporting the interpretation of measurements. In this review, we describe and compare different order-N computational methods that have been developed during the past twenty years, and which have been used extensively to explore quantum transport phenomena in disordered media. We place particular focus on the zero-frequency electrical conductivities derived within the Kubo–Greenwood​ and Kubo–Streda formalisms, and illustrate the capabilities of these methods to tackle the quasi-ballistic, diffusive, and localization regimes of quantum transport in the noninteracting limit. The fundamental issue of computational cost versus accuracy of various proposed numerical schemes is addressed in depth. We then illustrate the usefulness of these methods with various examples of transport in disordered materials, such as polycrystalline and defected graphene models, 3D metals and Dirac semimetals, carbon nanotubes, and organic semiconductors. Finally, we extend the review to the study of spin dynamics and topological transport, for which efficient approaches for calculating charge, spin, and valley Hall conductivities are described.
Versión del editorhttp://doi.org/10.1016/j.physrep.2020.12.001
URIhttp://hdl.handle.net/10261/265291
DOI10.1016/j.physrep.2020.12.001
Identificadoresdoi: 10.1016/j.physrep.2020.12.001
issn: 0370-1573
Aparece en las colecciones: (CIN2) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
LInear_scaling_quantum_transport.pdf4,78 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

22
checked on 13-may-2024

Download(s)

817
checked on 13-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons