Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/255715
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorPérez, Lázaro J.es_ES
dc.contributor.authorPuyguiraud, Alexandrees_ES
dc.contributor.authorHidalgo, Juan J.es_ES
dc.contributor.authorJiménez-Martínez, Joaquínes_ES
dc.contributor.authorParashar, Rishies_ES
dc.contributor.authorDentz, Marcoes_ES
dc.date.accessioned2021-12-10T10:53:40Z-
dc.date.available2021-12-10T10:53:40Z-
dc.date.issued2021-11-09-
dc.identifier.citationTransport in Porous Media (2021)es_ES
dc.identifier.issn01693913-
dc.identifier.urihttp://hdl.handle.net/10261/255715-
dc.description.abstractWe study mixing-controlled chemical reactions in unsaturated porous media from a pore-scale perspective. The spatial heterogeneity induced by the presence of two immiscible phases, here water and air, in the pore space generates complex flow patterns that dominate reactive mixing across scales. To assess the impact of different macroscopic saturation states (the fraction of pore volume occupied by water) on mixing-controlled chemical reactions, we consider a fast irreversible reaction between two initially segregated dissolved species that mix as one solution displaces the other in the heterogeneous flow field of the water phase. We use the pore-scale geometry and water distributions from the laboratory experiments reported by Jiménez-Martínez et al. (Geophys. Res. Lett. 42: 5316–5324, 2015). We analyze reactive mixing in three complementary ways. Firstly, we post-process experimentally observed spatially distributed concentration data; secondly, we perform numerical simulations of flow and reactive transport in the heterogeneous water phase, and thirdly, we use an upscaled mixing model. The first approach relies on an exact algebraic map between conservative and reactive species for an instantaneous irreversible bimolecular reaction that allows to estimate reactive mixing based on experimental conservative transport data. The second approach is based on reactive random walk particle tracking simulations in the numerically determined flow field in the water phase. The third approach uses a dispersive lamella approach that accounts for the impact of flow heterogeneity on mixing in terms of effective dispersion coefficients, which are estimated from both experimental data and numerical random walk particle tracking simulations. We observe a significant increase in reactive mixing for decreasing saturation, which is caused by the stronger heterogeneity of the water phase and thus of the flow field. This is consistently observed in the experimental data and the direct numerical simulations. The dispersive lamella model, parameterized by the effective interface width, provides robust estimates of the evolution of the product mass obtained from the experimental and numerical data.es_ES
dc.description.sponsorshipL.J.P. and R.P. acknowledge the support of the Desert Research Institute (DRI) through the Internal Project Assignment award (PG19221). A.P., J.J.H. and M.D. acknowledge the support of the Spanish Ministry of Science and Innovation (project HydroPore PID2019-106887GB-C31). J.J.H. acknowledges the support of the European Social Fund and Spanish Ministry of Science, Innovation and Universities through the “Ramón y Cajal” fellowship (RYC-2017-22300). IDAEA-CSIC is a Centre of Excellence Severo Ochoa (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S). J.J.-M. gratefully acknowledges the financial support from the Swiss National Science Foundation (SNF, grant Nr. 200021 178986).es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106887GB-C31es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CEX2018-000794-Ses_ES
dc.relation.ispartofTransport in Porous Mediaes_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.subjectMixinges_ES
dc.subjectUnsaturated porous mediaes_ES
dc.subjectUpscalinges_ES
dc.titleUpscaling Mixing-Controlled Reactions in Unsaturated Porous Mediaes_ES
dc.typeartículoes_ES
dc.identifier.doi10.1007/s11242-021-01710-2-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s11242-021-01710-2es_ES
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
dc.contributor.orcid0000-0002-3940-282Xes_ES
dc.identifier.scopus2-s2.0-85118639086-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85118639086-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.openairetypeartículo-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Aparece en las colecciones: (IDAEA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Perez2021_Article_UpscalingMixing-ControlledReac.pdfArtículo principal2,46 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

4
checked on 28-abr-2024

WEB OF SCIENCETM
Citations

4
checked on 27-feb-2024

Page view(s)

45
checked on 05-may-2024

Download(s)

43
checked on 05-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.