Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/246839
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory

AutorSciandra, Dario CSIC ORCID; Vilarrasa, Víctor CSIC ORCID ; Kivi, Iman Rahimzadeh CSIC ORCID ; Makhnenko, Roman Y.; Nussbaum, C.; Rebscher, D.
Palabras claveCO2
Caprock
Fecha de publicación19-abr-2021
CitaciónvEGU 2021: Gather Online, Geophysical Research Abstracts, Vol. 23, Vienna, Austria, 19-30 April 2021
ResumenWe are performing a series of coupled hydro-mechanical (HM) simulations to model CO2 flow through Opalinus Clay at the Mont Terri rock laboratory in the CO2 Long-term Periodic Injection Experiment (CO2LPIE). CO2LPIE aims at inter-disciplinary investigations of the caprock sealing capacity in geologic CO2 storage in a highly monitored environment at the underground laboratory scale. Numerical modeling allows us to gain knowledge on the dynamic processes resulting from CO2 periodic injection and to assist the experimental design. The cyclic injection parameters (i.e., the period and the amplitude) have to be optimized for the field experiment and therefore different values are taken into account. Opalinus Clay is a claystone with nanoDarcy permeability that contains well developed bedding planes responsible for its anisotropic HM behavior. The hydraulic anisotropy is defined by a permeability parallel to the bedding planes being three times the one perpendicular to it. Additionally, the drained Young’s modulus is measured to be 1.7 GPa parallel and 2.1 GPa perpendicular to bedding. Excavation reports by swisstopo document a SSEdip of 45° for the bedding planes at the experiment location. CO2 injection generates a mean overpressure of 1 MPa into the brine that propagates into the formation. The differential pressure between CO2 and formation water, i.e., capillary pressure, is lower than the entry pressure and thus, CO2 diffuses through the pores but does not advect in free phase. The liquid overpressure distribution is distorted by the hydraulic anisotropy, preferentially advancing along the bedding planes, as the associated permeability is higher than the one perpendicular to the bedding. The pore pressure buildup induces a poromechanical stress increase and an expansion of the rock that leads to a permeability enhancement of up to two orders of magnitude. The cyclic stimulation propagates trough the domain faster and with a lag time and an attenuation, both of which increase with distance from the source with, their values being dependent on permeability, porosity and stiffness of the rock. As a result of the model orthotropy, the attenuation and the lag time change with direction, i.e. they are higher in the direction perpendicular to the bedding and lower in the direction parallel to the bedding.
Versión del editorhttps://doi.org/10.5194/egusphere-egu21-8982
URIhttp://hdl.handle.net/10261/246839
DOI10.5194/egusphere-egu21-8982
Aparece en las colecciones: (IDAEA) Comunicaciones congresos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Sciandra_et_al_EGU21-8982-print.pdfProceeding278,51 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

75
checked on 03-may-2024

Download(s)

84
checked on 03-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.