Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/217126
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Thermal properties of large main-belt asteroids observed by Herschel PACS

AutorAli-Lagoa, Victor; Müller, T.G.; Kiss, C.; Szakáts, R.; Marton, G.; Farkas-Takács, Anikó; Bartczak, P.; Butkiewicz-Bąk, M.; Dudziński, G.; Marciniak, A.; Podlewska-Gaca, E.; Duffard, René D. CSIC ORCID; Santos Sanz, Pablo CSIC ORCID ; Ortiz, José Luis CSIC ORCID
Palabras claveInfrared: planetary systems
Minor planets, asteroids: general
Surveys
Fecha de publicación17-jun-2020
EditorEDP Sciences
CitaciónAstronomy & Astrophysics 638: A84 (2020)
ResumenNon-resolved thermal infrared observations enable studies of thermal and physical properties of asteroids via thermo-physical models provided the shape and rotational properties of the target are well determined. We used calibration-programme Herschel PACS data (70, 100, 160 μm) and state-of-the-art shape models derived from adaptive-optics observations and/or optical light curves to constrain for the first time the thermal inertia of twelve large main-belt asteroids. We also modelled previously well-characterised targets such as (1) Ceres or (4) Vesta as they constitute important benchmarks. Using the scale as a free parameter, most targets required a re-scaling ∼5% consistent with what would be expected given the absolute calibration error bars. This constitutes a good cross-validation of the scaled shape models, although some targets required larger re-scaling to reproduce the IR data. We obtained low thermal inertias typical of large main belt asteroids studied before, which continues to give support to the notion that these surfaces are covered by fine-grained insulating regolith. Although the wavelengths at which PACS observed are longwards of the emission peak for main-belt asteroids, they proved to be extremely valuable to constrain size and thermal inertia and not too sensitive to surface roughness. Finally, we also propose a graphical approach to help examine how different values of the exponent used for scaling the thermal inertia as a function of heliocentric distance (i.e. temperature) affect our interpretation of the results. © V. Alí-Lagoa et al. 2020.
DescripciónOpen Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Open Access funding provided by Max Planck Society.
Versión del editorhttp://dx.doi.org/10.1051/0004-6361/202037718
URIhttp://hdl.handle.net/10261/217126
DOI10.1051/0004-6361/202037718
ISSN0004-6361
Aparece en las colecciones: (IAA) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
IAA_2020A&A...638A..84A.pdf4,5 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

10
checked on 21-abr-2024

WEB OF SCIENCETM
Citations

9
checked on 20-feb-2024

Page view(s)

139
checked on 29-abr-2024

Download(s)

90
checked on 29-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons