English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/1421
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 52 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Integrated analysis of gene expression by association rules discovery
Autor : Carmona-Sáez, Pedro; Chagoyen, Mónica; Rodríguez, Andrés; Trelles, Oswaldo; Carazo, José M.; Pascual-Montano, Alberto
Fecha de publicación : 7-feb-2006
Editor: BioMed Central
Citación : BMC Bioinformatics 2006, 7:54
Resumen: [Background] Microarray technology is generating huge amounts of data about the expression level of thousands of genes, or even whole genomes, across different experimental conditions. To extract biological knowledge, and to fully understand such datasets, it is essential to include external biological information about genes and gene products to the analysis of expression data. However, most of the current approaches to analyze microarray datasets are mainly focused on the analysis of experimental data, and external biological information is incorporated as a posterior process.
[Results] In this study we present a method for the integrative analysis of microarray data based on the Association Rules Discovery data mining technique. The approach integrates gene annotations and expression data to discover intrinsic associations among both data sources based on co-occurrence patterns. We applied the proposed methodology to the analysis of gene expression datasets in which genes were annotated with metabolic pathways, transcriptional regulators and Gene Ontology categories. Automatically extracted associations revealed significant relationships among these gene attributes and expression patterns, where many of them are clearly supported by recently reported work.
[Conclusion] The integration of external biological information and gene expression data can provide insights about the biological processes associated to gene expression programs. In this paper we show that the proposed methodology is able to integrate multiple gene annotations and expression data in the same analytic framework and extract meaningful associations among heterogeneous sources of data. An implementation of the method is included in the Engene software package.
Descripción : This article is available from: http://www.biomedcentral.com/1471-2105/7/54
URI : http://hdl.handle.net/10261/1421
DOI: 10.1186/1471-2105-7-54
ISSN: 1471-2105
Aparece en las colecciones: (CNB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1471-2105-7-54.pdf1,51 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.