Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/132426
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Hybrid cache designs for reliable hybrid high and ultra-low voltage operation

AutorMaric, Bojan; Abella, Jaume; Cazorla, Francisco J.; Valero, Mateo
Palabras clavePerformance
Low energy
Hybrid voltage operation
Reliability
Embedded real time
Cache memories
Design
Fecha de publicación2014
CitaciónACM Transactions on Design Automation of Electronic Systems 20 (1), 2014
Resumen© 2014 ACM. Geometry scaling of semiconductor devices enables the design of ultra-low-cost (e.g., below 1 USD) battery-powered resource-constrained ubiquitous devices for environment, urban life, and body monitoring. These sensor-based devices require high performance to react in front of infrequent particular events as well as extreme energy efficiency in order to extend battery lifetime during most of the time when low performance is required. In addition, they require real-time guarantees. The most suitable technological solution for these devices consists of using hybrid processors able to operate at: (i) high voltage to provide high performance and (ii) near-/subthreshold voltage to provide ultra-low energy consumption. However, the most efficient SRAM memories for each voltage level differ and trading off different SRAM designs is mandatory. This is particularly true for cache memories, which occupy most of the processor's area. In this article, we propose new, simple, single-Vcc-domain hybrid L1 cache architectures suitable for reliable hybrid high and ultra-low voltage operation. In particular, the cache is designed by combining heterogeneous SRAM cell types: some of the cache ways are optimized to satisfy high-performance requirements during high voltage operation, whereas the rest of the ways provide ultra-low energy consumption and reliability during near-/subthreshold voltage operation. We analyze the performance, energy, and power impact of the proposed cache designs when using them to implement L1 caches in a processor. Experimental results show that our hybrid caches can efficiently and reliably operate across a wide range of voltages, consuming little energy at near-/subthreshold voltage as well as providing high performance at high voltage without decreasing reliability levels to provide strong performance guarantees, as required for our target market.
URIhttp://hdl.handle.net/10261/132426
DOI10.1145/2658988
Identificadoresdoi: 10.1145/2658988
issn: 1557-7309
Aparece en las colecciones: (IIIA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

1
checked on 09-may-2024

Page view(s)

192
checked on 13-may-2024

Download(s)

114
checked on 13-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.