English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/107683
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Selective detection of volatile organic compounds by spectral imaging of porphyrin derivatives bound to TiO 2 porous films

AuthorsRoales, Javier; Pedrosa, José M.; Castillero, Pedro ; Cano, Manuel; Richardson, Tim; Barranco, Ángel ; González-Elipe, Agustín R.
KeywordsGas sensors
Spectral imaging
Optical sensing
Gas sensorsolatile organic compounds
Spectral imaging
Optical sensing
Carboxyphenyl porphyrin
TiO2 nanostructures
Volatile organic compounds
Issue Date2012
CitationACS applied materials & interfaces 4: 5147- 5154 (2012)
AbstractIn this work, the carboxylic acid derivatives of a free-base porphyrin, 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphyrin, and 10 of its metal derivatives (TCPPs) have been used for optical gas sensing. For this purpose, microstructured columnar TiO 2 thin films prepared by GAPVD (glancing angle physical vapor deposition) have been used as host materials for the porphyrins as they are non-dispersive and porous, allowing their use for UV-visible spectroscopy and gas sensing. The chemical binding between the dye molecules and the TiO 2 has been studied through infrared spectroscopy, and the obtained spectral changes have been found to be compatible with chelating and/or bidentate binding modes of the carboxylate groups on the TiO 2 surface. When hosted in the film, the UV-visible spectra of the porphyrins featured a blue shift and broadening of the Soret band with respect to the solution, which has been attributed to the formation of ?-? aggregates between porphyrin molecules. The composite porphyrin/TiO 2 films obtained from each of the 11 porphyrins have been exposed to 12 different volatile organic compounds (VOCs), and their respective gas-sensitive properties have been analyzed as a function of the spectral changes in their Soret band region in the presence of the analytes. The set of composite films has shown high selectivity to the analyzed volatile compounds. For each analyte, an innovative way of showing the different responses has been developed. By means of this procedure, an imagelike recognition pattern has been obtained, which allows an easy identification of every compound. The kinetics of the exposure to several analytes showed a fast, reversible and reproducible response, with response times of a few seconds, which has been attributed to both the sensitivity of the porphyrins and the high porosity of the TiO 2 films. Also, increasing concentrations of the analytes resulted in an increase in the magnitude of the response, indicating that the sensor behavior is also concentration-dependent. © 2012 American Chemical Society.
URIhttp://hdl.handle.net/10261/107683
DOI10.1021/am3010169
10.1021/am3010169
Identifiersdoi: 10.1021/am3010169
issn: 1944-8244
Appears in Collections:(ICMS) Artículos
Files in This Item:
File Description SizeFormat 
showGalleyPdf.pdf4,41 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.