Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/10730
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Thermal and Narrow-band Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle

AutorJiménez-Berni, José A. ; Zarco-Tejada, Pablo J. CSIC ORCID; Suárez Barranco, María Dolores CSIC ORCID; Fereres Castiel, Elías CSIC ORCID
Palabras claveMultispectral
Narrowband
Radiative transfer modeling
Remote sensing
Stress detection
Thermal
Unmanned aerial system (UAS)
Unmanned aerial vehicles
Fecha de publicaciónmar-2009
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Geoscience and Remote Sensing 47(3): 722-738 (2009)
ResumenTwo critical limitations for using current satellite sensors in real-time crop management are the lack of imagery with optimum spatial and spectral resolutions and an unfavorable revisit time for most crop stress-detection applications. Alternatives based on manned airborne platforms are lacking due to their high operational costs. A fundamental requirement for providing useful remote sensing products in agriculture is the capacity to combine high spatial resolution and quick turnaround times. Remote sensing sensors placed on unmanned aerial vehicles (UAVs) could fill this gap, providing low-cost approaches to meet the critical requirements of spatial, spectral, and temporal resolutions. This paper demonstrates the ability to generate quantitative remote sensing products by means of a helicopter-based UAV equipped with inexpensive thermal and narrowband multispectral imaging sensors. During summer of 2007, the platform was flown over agricultural fields, obtaining thermal imagery in the 7.5–13- $muhbox{m}$ region (40-cm resolution) and narrowband multispectral imagery in the 400–800-nm spectral region (20-cm resolution). Surface reflectance and temperature imagery were obtained, after atmospheric corrections with MODTRAN. Biophysical parameters were estimated using vegetation indices, namely, normalized difference vegetation index, transformed chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index, and photochemical reflectance index (PRI), coupled with SAILH and FLIGHT models. As a result, the image products of leaf area index, chlorophyll content $(C_{rm ab})$ , and water stress detection from PRI index and canopy temperature were produced and successfully validated. This paper demonstrates that results obtained with a low-cost UAV system for agricultural applications yielded comparable estimations, if not better, than those obtained by traditional mann- - ed airborne sensors.
Descripción17 pages, 18 figures, 4 tables.
Versión del editorhttp://dx.doi.org/10.1109/TGRS.2008.2010457
URIhttp://hdl.handle.net/10261/10730
DOI10.1109/TGRS.2008.2010457
ISSN0196-2892
Aparece en las colecciones: (IAS) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
35.pdfMain text2,52 MBAdobe PDFVista previa
Visualizar/Abrir
Water_stress_detection_Press_release.pdfCSIC Press release (Spanish lang.)103,46 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

1.048
checked on 16-abr-2024

WEB OF SCIENCETM
Citations

859
checked on 21-feb-2024

Page view(s)

2.170
checked on 30-abr-2024

Download(s)

5.012
checked on 30-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.