Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/58983
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

The evolution of contact-dependent inhibition in non-growing populations of Escherichia col

AutorLemonnier, Marc CSIC ORCID; Levin, Bruce R.; Romero, Tony; Garner, Kim; Baquero, María-Rosario; Mercante, Jeff; Lamischez, Emmanuel; Baquero, Fernando CSIC ORCID; Blázquez, Jesús
Palabras claveEscherichia coli
Allelopathy
parallel evolution
glycogen
population biology
mathematical models
Fecha de publicación7-ene-2008
EditorRoyal Society (Great Britain)
CitaciónProceedings of the Royal Society B: Biological Sciences 275(1630):3-10(2008)
ResumenIn the course of liquid culture, serial passage experiments with Escherichia coli K-12 bearing a mutator gene deletion (ΔmutS) we observed the evolution of strains that appeared to kill or inhibit the growth of the bacteria from where they were derived, their ancestors. We demonstrate that this inhibition occurs after the cells stop growing and requires physical contact between the evolved and ancestral bacteria. Thereby, it is referred to as stationary phase contact-dependent inhibition (SCDI). The evolution of this antagonistic relationship is not anticipated from existing theory and experiments of competition in mass (liquid) culture. Nevertheless, it occurred in the same way (parallel evolution) in the eight independent serial transfer cultures, through different single base substitutions in a gene in the glycogen synthesis pathway, glgC. We demonstrate that the observed mutations in glgC, which codes for ADP-glucose pyrophosphorylase, are responsible for both the ability of the evolved bacteria to inhibit or kill their ancestors and their immunity to that inhibition or killing. We present evidence that without additional evolution, mutator genes, or known mutations in glgC, other strains of E. coli K-12 are also capable of SCDI or sensitive to this inhibition. We interpret this, in part, as support for the generality of SCDI and also as suggesting that the glgC mutations responsible for the SCDI, which evolved in our experiments, may suppress the action of one or more genes responsible for the sensitivity of E. coli to SCDI. Using numerical solutions to a mathematical model and in vitro experiments, we explore the population dynamics of SCDI and postulate the conditions responsible for its evolution in mass culture. We conclude with a brief discussion of the potential ecological significance of SCDI and its possible utility for the development of antimicrobial agents, which unlike existing antibiotics, can kill or inhibit the growth of bacteria that are not growing
Descripción8 páginas, 5 figuras -- PAGS nros. 3-10
Versión del editorhttp://dx.doi.org/10.1098/rspb.2007.1234
URIhttp://hdl.handle.net/10261/58983
DOI10.1098/rspb.2007.1234
ISSN0962-8452
E-ISSN1471-2954
Aparece en las colecciones: (CIB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
restringido.pdf21,67 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

21
checked on 22-abr-2024

SCOPUSTM   
Citations

34
checked on 04-may-2024

WEB OF SCIENCETM
Citations

33
checked on 26-feb-2024

Page view(s)

258
checked on 07-may-2024

Download(s)

154
checked on 07-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.