Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/350600
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorStolberg, Michael A.es_ES
dc.contributor.authorParen, Benjamin A.es_ES
dc.contributor.authorLeon, Pablo A.es_ES
dc.contributor.authorBrown, Christopher M.es_ES
dc.contributor.authorWinter, Gavines_ES
dc.contributor.authorGordiz, Kiarashes_ES
dc.contributor.authorConcellón, Albertoes_ES
dc.contributor.authorGómez-Bombarelli, Rafaeles_ES
dc.contributor.authorShao-Horn, Yanges_ES
dc.contributor.authorJohnson, Jeremiah A.es_ES
dc.date.accessioned2024-03-15T12:50:34Z-
dc.date.available2024-03-15T12:50:34Z-
dc.date.issued2023-
dc.identifier.citationJournal of the American Chemical Society 145(29): 16200-16209 (2023)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/350600-
dc.description.abstractSolid polymer electrolytes have the potential to enable safer and more energy-dense batteries; however, a deeper understanding of their ion conduction mechanisms, and how they can be optimized by molecular design, is needed to realize this goal. Here, we investigate the impact of anion dissociation energy on ion conduction in solid polymer electrolytes via a novel class of ionenes prepared using acyclic diene metathesis (ADMET) polymerization of highly dissociative, liquid crystalline fluorinated aryl sulfonimide-tagged (“FAST”) anion monomers. These ionenes with various cations (Li+, Na+, K+, and Cs+) form well-ordered lamellae that are thermally stable up to 180 °C and feature domain spacings that correlate with cation size, providing channels lined with dissociative FAST anions. Electrochemical impedance spectroscopy (EIS) and differential scanning calorimetry (DSC) experiments, along with nudged elastic band (NEB) calculations, suggest that cation motion in these materials operates via an ion-hopping mechanism. The activation energy for Li+ conduction is 59 kJ/mol, which is among the lowest for systems that are proposed to operate via an ion conduction mechanism that is decoupled from polymer segmental motion. Moreover, the addition of a cation-coordinating solvent to these materials led to a >1000-fold increase in ionic conductivity without detectable disruption of the lamellar structure, suggesting selective solvation of the lamellar ion channels. This work demonstrates that molecular design can facilitate controlled formation of dissociative anionic channels that translate to significant enhancements in ion conduction in solid polymer electrolytes.es_ES
dc.description.sponsorshipThe authors thank the Toyota Research Institute (TRI) for supporting this work through the Accelerated Materials Design and Discovery (AMDD) program. G.W. acknowledges funding support from the Department of Energy Advanced Manufacturing Office (Grant # DE-EE0009096). P.L. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program. C.B. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsclosedAccesses_ES
dc.titleLamellar ionenes with highly dissociative, anionic channels provide lower barriers for cation transportes_ES
dc.typeartículoes_ES
dc.identifier.doi10.1021/jacs.3c05053-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1021/jacs.3c05053es_ES
dc.identifier.e-issn1520-5126-
dc.contributor.funderToyota Foundationes_ES
dc.contributor.funderDepartment of Defense (US)es_ES
dc.contributor.funderNatural Sciences and Engineering Research Council of Canadaes_ES
dc.contributor.funderDepartment of Energy (US)es_ES
dc.contributor.funderArgonne National Laboratory (US)es_ES
dc.relation.csicNoes_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/100006224es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000005es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000015es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000038es_ES
dc.identifier.pmid37459594-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
Aparece en las colecciones: (INMA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf59,24 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

1
checked on 01-may-2024

Page view(s)

17
checked on 07-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.