Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/350238
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Using machine learning to optimize laser-powder bed fusion (LPBF) parameters of metallic materials

AutorBahari-Sambran, F.; Carreño, Fernando CSIC ORCID ; García-Escorial, A.; Orozco-Caballero, A. CSIC ORCID; Cepeda-Jiménez, C.M. CSIC ORCID
Palabras claveMachine learning
Artificial neural network
Transfer learning
LPBF
AlSi10Mg
SS316L
AlFeCrSi.
Fecha de publicación27-sep-2023
ResumenThe final properties of parts made via laser-powder bed fusion (L-PBF) are extremely sensitive to the processing parameters such as power, time exposure, hatch distance etc. As such, it is a significant challenge to identify the optimal operating parameters to produce parts rapidly and reliably with the desired properties without defects [1]. Artificial intelligence (AI), and in particular machine learning, is an innovative tool that can be employed for process optimization and predicting the microstructural and mechanical properties of fabricated parts [2]. However, to generate a robust machine learning model, sufficient amount of training data is required, which is time-consuming and very expensive, particularly in L-PBF. In this study, transfer learning artificial neural network (TR-ANN) is proposed to overcome such inconvenience and optimize the processing parameters in AlSi10Mg alloy for additive manufacturing [3]. Firstly, the base model will be trained using data from literature to generate the processing window, and next, training of the target model will be carried out by experimental data from printed AlSi10Mg samples. The TLANN models predicted the density, melt pool depth, and melt pool width of the AlSi10Mg printed parts with an R2 score of 0.977, 0.966, and 0.987, respectively. In addition to validate the performance predictions made by the TR-ANN machine learning model, this approach is generalized for different metallic materials, such as SS316L and a new aluminium alloy (AlFeCrSi) specifically designed for L-PBF.
DescripciónAlloys for Additive Manufacturing Symposium (AAMS2023) Universidad Carlos III de Madrid
Versión del editorhttps://aams2023.com/program/
URIhttp://hdl.handle.net/10261/350238
Aparece en las colecciones: (CENIM) Comunicaciones congresos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
975434.pdf26,63 kBUnknownVisualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

21
checked on 04-may-2024

Download(s)

8
checked on 04-may-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.