Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/348073
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Assessing Contamination Profiles in Livers from Road-Killed Owls

AutorDulsat-Masvidal, Maria; Lourenço, Rui; Mateo, Rafael CSIC ORCID ; Lacorte Bruguera, Silvia CSIC ORCID
Palabras claveWildlife toxicology
Biomonitoring
Birds
Contaminants
Organic contaminants
Fecha de publicación26-dic-2023
EditorSETAC (Society)
CitaciónEnvironmental Toxicology and Chemistry (2024)
ResumenRaptors are recognized as valuable sentinel species for monitoring environmental contaminants owing to their foraging behavior across terrestrial and aquatic food webs and their high trophic position. The present study monitored environmental contaminants in livers from road-killed owls to evaluate differences in the exposure patterns due to factors such as species, age, and sex of individuals. Carcasses of road-killed individuals of eagle owl (Bubo bubo), long-eared owl (Asio otus), little owl (Athene noctua), tawny owl (Strix aluco), and barn owl (Tyto alba) were collected in Alentejo (Portugal). Eighty-one organic contaminants were analyzed, including organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), pharmaceuticals, in-use pesticides, and organophosphate esters (OPEs). Overall, 21 contaminants were detected. In all species ∑OCPs were prevalent at concentrations from 3.24 to 4480 ng/g wet weight, followed by perfluorooctane sulfonic acid (PFOS), the only PFASs detected (from 2.88 to 848 ng/g wet wt) and ∑PCBs (1.98-2010 ng/g wet wt); ∑PAHs were ubiquitous but detected at the lowest concentrations (7.35-123 ng/g wet wt). Differences among species were observed according to principal component analysis. Eagle owl and long-eared owl presented the highest levels of ∑OCPs, ∑PCBs, and PFOS, consistent with its higher trophic position, while ∑PAHs prevailed in tawny owl, barn owl, and little owl, related to their frequent use of urban areas for nesting and roadsides for hunting. Adults presented higher concentrations of ∑OCPs and ∑PCBs than juveniles, while no differences were observed for PFOS and ∑PAHs. Pharmaceuticals, in-use pesticides, and OPEs were not detected. Overall, the present study shows specific contamination patterns in five species with similar diet but with differences in habitat preferences. Environ Toxicol Chem 2024;00:1-12. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Versión del editorhttps://doi.org/10.1002/etc.5816
URIhttp://hdl.handle.net/10261/348073
DOI10.1002/etc.5816
ISSN07307268
Aparece en las colecciones: (IDAEA) Artículos




Ficheros en este ítem:
Mostrar el registro completo

CORE Recommender
sdgo:Goal
sdgo:Goal

Page view(s)

13
checked on 05-may-2024

Download(s)

5
checked on 05-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.