Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/347005
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

In vitro antibacterial activity of silver nanoparticles conjugated with amikacin and combined with hyperthermia against drug-resistant and biofilm-producing strains

AutorPalau, Marta; Muñoz, Estela; Gusta, Muriel F. CSIC ORCID; Larrosa, Nieves; Gomis, Xavier; Gilabert , Joan; Almirante, Benito; Puntes, Víctor F. CSIC ORCID; Texidó, Robert; Gavaldà, Joan
Palabras claveMDR/XDR
Amikacin
Antibacterial activity
Biofilms
Hyperthermia
Silver nanoparticles
Fecha de publicación2023
EditorAmerican Society for Microbiology
CitaciónMicrobiology Spectrum 11(3): e0028023 (2023)
ResumenIn view of the current increase and spread of antimicrobial resistance (AMR), there is an urgent need to find new strategies to combat it. This study had two aims. First, we synthesized highly monodispersed silver nanoparticles (AgNPs) of approximately 17 nm, and we functionalized them with mercaptopoly(ethylene glycol) carboxylic acid (mPEG-COOH) and amikacin (AK). Second, we evaluated the antibacterial activity of this treatment (AgNPs_mPEG_AK) alone and in combination with hyperthermia against planktonic and biofilm-growing strains. AgNPs, AgNPs_mPEG, and AgNPs_mPEG_AK were characterized using a suite of spectroscopy and microscopy methods. Susceptibility to these treatments and AK was determined after 24 h and over time against 12 clinical multidrug-resistant (MDR)/extensively drug-resistant (XDR) isolates of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The efficacy of the treatments alone and in combination with hyperthermia (1, 2, and 3 pulses at 41°C to 42°C for 15 min) was tested against the same planktonic strains using quantitative culture and against one P. aeruginosa strain growing on silicone disks using confocal laser scanning microscopy. The susceptibility studies showed that AgNPs_mPEG_AK was 10-fold more effective than AK alone, and bactericidal efficacy after 4, 8, 24, or 48 h was observed against 100% of the tested strains. The combination of AgNPs_mPEG_AK and hyperthermia eradicated 75% of the planktonic strains and exhibited significant reductions in biofilm formation by P. aeruginosa in comparison with the other treatments tested, except for AgNPs_mPEG_AK without hyperthermia. In conclusion, the combination of AgNPs_mPEG_AK and hyperthermia may be a promising therapy against MDR/XDR and biofilm-producing strains.
[IMPORTANCE] Antimicrobial resistance (AMR) is one of the greatest public health challenges, accounting for 1.27 million deaths worldwide in 2019. Biofilms, a complex microbial community, directly contribute to increased AMR. Therefore, new strategies are urgently required to combat infections caused by AMR and biofilm-producing strains. Silver nanoparticles (AgNPs) exhibit antimicrobial activity and can be functionalized with antibiotics. Although AgNPs are very promising, their effectiveness in complex biological environments still falls below the concentrations at which AgNPs are stable in terms of aggregation. Thus, improving the antibacterial effectiveness of AgNPs by functionalizing them with antibiotics may be a significant change to consolidate AgNPs as an alternative to antibiotics. It has been reported that hyperthermia has a large effect on the growth of planktonic and biofilm-producing strains. Therefore, we propose a new strategy based on AgNPs functionalized with amikacin and combined with hyperthermia (41°C to 42°C) to treat AMR and biofilm-related infections.
Versión del editorhttps://doi.org/10.1128/spectrum.00280-23
URIhttp://hdl.handle.net/10261/347005
DOI10.1128/spectrum.00280-23
E-ISSN2165-0497
Aparece en las colecciones: (CIN2) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
invitrostrain.pdf3,2 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

3
checked on 30-abr-2024

SCOPUSTM   
Citations

3
checked on 26-abr-2024

Page view(s)

14
checked on 30-abr-2024

Download(s)

5
checked on 30-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons