Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/334805
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Supplementary Material for: Modelling and operation strategy approaches for on-site Hydrogen Refuelling Stations [Dataset]

AutorCardona, Pol; Costa Castelló, Ramon CSIC ORCID ; Roda, Vicente CSIC; Carroquino, Javier; Valiño García, Luis CSIC ORCID; Ocampo-Martínez, Carlos CSIC ORCID ; Serra, Maria CSIC ORCID
Palabras claveHydrogen refuelling station
Operational strategy
Modelling approach
On-site hydrogen production
Green hydrogen production
Finite-state machine
Fecha de publicación1-sep-2023
EditorElsevier
CitaciónCardona, Pol; Costa Castelló, Ramon; Roda, Vicente; Carroquino, Javier; Valiño García, Luis; Ocampo-Martínez, Carlos; Serra, Maria; 2023; Supplementary Material for Modelling and operation strategy approaches for on-site Hydrogen Refuelling Stations [Dataset]; Elsevier; https://doi.org/10.1016/j.ijhydene.2023.08.192
ResumenS1 Operational strategy flow chart. S2 One-day long simulation supplementary results. S3 One-year long simulation results.-- S2: Results for the first day of January, 2016, in Zaragoza (Spain).-- S3: Results for one year of simulation (2016).-- MATLAB/SimulinkⓇ has been employed as the simulation platform.
DescripciónS1. Operational strategy flow chart: The operational strategy simplified flow chart of the main filling and refuelling events logic is shown in Figure S.1. Operational strategy simplified flow chart concerning the cascaded filling and refuelling processes of the HRS. Compressor C1 and the battery operational strategy is not shown. S2. One-day long simulation supplementary results: This section complementary results for the same simulation configuration of 8 daily HDFVs and 60 kg/day of demand and case c) of Figure 3 of the manuscript. Figure S.2: Compressors flow and power consumption. Simulation configuration: case c) with 60 kg/day and 8 HDFV per day. Results for the first day of January, 2016. Figure S.3: (A) left: direct beam irradiance. (A) right: photovoltaic power generation. (B) left: direct beam irradiance. (C) right: electrolyzer H2 flow rate production. (D) left: power balance of the HRS. (D) right: power balance of the HRS without the battery participation. (D) left: State-of-Charge of the battery. (D) right: power charging/discharging rate applied to the battery. Simulation configuration: case c) with 60 kg/day and 8 HDFV per day. Results for the first day of January, 2016. S3. One-year long simulation results: Figure S.4: H2 tanks pressure dynamic results of case c) with 60 kg/day and 8 HDFV per day. Results for one year of simulation (2016). Figure S.5: (A) left: direct beam irradiance. (A) right: photovoltaic power generation. (B) left: direct beam irradiance. (C) right: electrolyzer H2 flow rate production. (D) left: power balance of the HRS. (D) right: power balance of the HRS without the battery participation. (D) left: State-of-Charge of the battery. (D) right: power charging/discharging rate applied to the battery. Simulation configuration: case c) with 60 kg/day and 8 HDFV per day. Results for one year of simulation (2016). Figure S.6: (A) left: cumulative H2 production emissions in Spain [51]. (A) right: equivalent emissions of the photovoltaic generation in Spain [51]. (B) left: cumulative greenhouse gas emission intensity of H2 production in Spain [51]. (B) right: emission savings according to [51]. Simulation configuration: case c) with 60 kg/day and 8 HDFV per day. Results for one year of simulation (2016). Figure S.7: (A): cumulative HRS operation emissions due to power consumption/injection to the utility grid in Spain [51]. (B) left: cumulative greenhouse gas emission intensity of HRS operation in Spain [51]. (B) right: emission savings according to [51] considering all power loads and the photovoltaic and battery inputs of the model. Simulation configuration: case c) with 60 kg/day and 8 HDFV per day. Results for one year of simulation (2016).-- The ambient temperature is considered constant at 298 K..-- Under a Creative Commons license BY-NC-ND 4.0.
Versión del editorhttp://dx.doi.org/10.1016/j.ijhydene.2023.08.192
https://ars.els-cdn.com/content/image/1-s2.0-S0360319923042167-mmc1.pdf
URIhttp://hdl.handle.net/10261/334805
DOI10.1016/j.ijhydene.2023.08.192
ReferenciasCardona, Pol; Costa Castelló, Ramon; Roda, Vicente; Carroquino, Javier; Valiño García, Luis; Ocampo-Martínez, Carlos; Serra, Maria. Modelling and operation strategy approaches for on-site Hydrogen Refuelling Stations. https://doi.org/10.1016/j.ijhydene.2023.08.192. https://digital.csic.es/handle/10261/334782
Aparece en las colecciones: (IRII) Conjuntos de datos
(ICB) Conjuntos de datos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
1-s2.0-S0360319923042167-mmc1.pdfInformación suplementaria2,05 MBAdobe PDFVista previa
Visualizar/Abrir
README .txt4,24 kBTextVisualizar/Abrir
Mostrar el registro completo

CORE Recommender
sdgo:Goal
sdgo:Goal
fair
fair eva

Page view(s)

46
checked on 29-abr-2024

Download(s)

4
checked on 29-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons