Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/295749
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Sustainable Synthesis of Silicon Precursors Coupled with Hydrogen Delivery Based on Circular Economy via Molecular Cobalt-Based Catalysts

AutorGutiérrez-Tarriño, S.; Rojas-Buzo, Sergio; Ortuño, Manuel A.; Oña-Burgos, Pascual CSIC ORCID
Fecha de publicación8-dic-2022
EditorACS Publications
CitaciónACS Sustainable Chemistry and Engineering 10(50): 16624-16633 (2022)
ResumenThe development of a circular economy is a key target to reduce our dependence on fossil fuels and create more sustainable processes. Concerning hydrogen as an energy vector, the use of liquid organic hydrogen carriers is a promising strategy, but most of them present limitations for hydrogen release, such as harsh reaction conditions, poor recyclability, and low-value byproducts. Herein, we present a novel sustainable methodology to produce value-added silicon precursors and concomitant hydrogen via dehydrogenative coupling by using an air- and water-stable cobalt-based catalyst synthesized from cheap and commercially available starting materials. This methodology is applied to the one-pot synthesis of a wide range of alkoxy-substituted silanes using different hydrosilanes and terminal alkenes as reactants in alcohols as green solvents under mild reaction conditions (room temperature and 0.1 mol % cobalt loading). We also demonstrate that the selectivity toward hydrosilylation/hydroalkoxysilylation can be fully controlled by varying the alcohol/water ratio. This implies the development of a circular approach for hydrosilylation/hydroalkoxysilylation reactions, which is unprecedented in this research field up to date. Kinetic and in situ spectroscopic studies (electron paramagnetic resonance, nuclear magnetic resonance, and electrospray ionization mass spectrometry), together with density functional theory simulations, further provide a detailed mechanistic picture of the dehydrogenative coupling and subsequent hydrosilylation. Finally, we illustrate the application of our catalytic system in the synthesis of an industrially relevant polymer precursor coupled with the production of green hydrogen on demand. copy; 2022 American Chemical Society.
Versión del editorhttp://dx.doi.org/10.1021/acssuschemeng.2c04444
URIhttp://hdl.handle.net/10261/295749
DOI10.1021/acssuschemeng.2c04444
Identificadoresdoi: 10.1021/acssuschemeng.2c04444
issn: 2168-0485
Aparece en las colecciones: (ITQ) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Sustainable_Synthesis.pdf3,74 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

23
checked on 21-may-2024

Download(s)

56
checked on 21-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons