Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/295404
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure

AutorReich, Megan S.; Kindra, Mira; Dargent, Felipe; Hu, Lihai; Flockhart, D. T. Tyler; Norris, D.Ryan; Kharouba, Heather; Talavera, Gerard CSIC ORCID; Bataille, Clément P.
Palabras claveMetal isotopes
Strontium isotopes (87Sr/86Sr)
Lead isotopes
Isotope-based geographic assignment
Chemoprint
Monarch butterfly (Danaus plexippus)
Metal pollution
Fecha de publicación13-feb-2023
EditorFrontiers Media
CitaciónFront. Ecol. Evol. 11(2023)
ResumenAnthropogenic activities are exposing insects to elevated levels of toxic metals and are altering the bioavailability of essential metals. Metals and metal isotopes have also become promising tools for the geolocation of migratory insects. Understanding the pathways of metal incorporation in insect tissues is thus important for assessing the role of metals in insect physiology and ecology and for the development of metals and metal isotopes as geolocation tools. We conducted a diet-switching experiment on monarch butterflies [Danaus plexippus (L.)] with controlled larval and adult diets to evaluate the sources of 23 metals and metalloids, strontium isotopes, and lead isotopes to insect wing tissues over a period of 8 weeks. Concentrations of Ca, Co, Mo, and Sb differed between the sexes or with body mass. Ni and Zn bioaccumulated in the insect wing tissues over time, likely from the adult diet, while increases in Al, Cr, Cd, Cu, Fe, and Pb were, at least partially, from external sources (i.e., dust aerosols). Bioaccumulation of Pb in the monarch wings was confirmed by Pb isotopes to mainly be sourced from external anthropogenic sources, revealing the potential of Pb isotopes to become an indicator and tracer of metal pollution exposure along migratory paths. Concentrations of Ba, Cs, Mg, Na, Rb, Sr, Ti, Tl, and U appeared to be unaffected by intrinsic factors or additions of metals from adult dietary or external sources, and their potential for geolocation should be further explored. Strontium isotope ratios remained indicative of the larval diet, at least in males, supporting its potential as a geolocation tool. However, the difference in strontium isotope ratios between sexes, as well as the possibility of external contamination by wetting, requires further investigation. Our results demonstrate the complexity of metal incorporation processes in insects and the value of studying metals to develop new tools to quantify pollution exposure, metal toxicity, micronutrient uptake, and insect mobility.
Versión del editorhttps://doi.org/10.3389/fevo.2023.1085903
URIhttp://hdl.handle.net/10261/295404
DOIhttps://doi.org/10.3389/fevo.2023.1085903
Identificadoresdoi: https://doi.org/10.3389/fevo.2023.1085903
e-issn: 2296-701X
Aparece en las colecciones: (IBB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Reich_et_al_2023.pdf2 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

104
checked on 19-may-2024

Download(s)

45
checked on 19-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons