Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/289544
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Exploring the variability of the venusian thermosphere with the IPSL Venus GCM

AutorMartinez, Antoine; Lebonnois, Sébastien; Millour, Ehouarn; Pierron, Thomas; Moisan, Enora; Gilli, G.; Lefèvre, Franck
Palabras claveVenus
Thermosphere
Modeling
Composition
Solar cycle
Fecha de publicación1-ene-2023
EditorElsevier
CitaciónIcarus 389: 115272 (2023)
ResumenRecent simulations of the Institut Pierre-Simon Laplace (IPSL) Venus Global Climate Model (VGCM) developed at the Laboratoire de Météorologie Dynamique (LMD) were performed with a model top raised from ∼10−5 (∼150 km) to ∼10−8 Pa (180–250 km; upper boundary). The parameterizations of non-LTE CO2 near infrared heating rates and of non-orographic gravity waves were improved. In addition, a tuning of atomic oxygen production was introduced to improve related effects (heating and cooling) and resulting thermospheric number densities. This work focusses on validating the modelled thermospheric structure using data from the Pioneer Venus, Magellan and Venus Express missions which cover similar and complementary (equator and pole) regions at different periods of solar activity, typically above altitudes of 130 km. This version of the IPSL VGCM shows good agreement with the diurnal evolution of the exospheric temperature at the equator reconstructed from the atomic oxygen scale height of the Pioneer Venus Orbiter Neutral Mass Spectrometer data. The model is also able to reproduce the sensitivity of the exospheric temperature and species density to the EUV flux of the solar high activity period (from 180 to 230 solar flux unit; s.f.u). However, to fit with the PV-ONMS density observations, it was necessary to increase the photodissociation of CO2 into CO and O above 135 km by a factor of 10. Indeed, our study points to the importance of an additional source of oxygen and carbon monoxide production above 130 km other than CO2 photolysis to explain the vertical profiles of CO and O number density in the thermosphere. Moreover, the presence of a GW drag at altitudes above 140 km has a significant impact on the nightside temperature value and its distribution. © 2022 The Authors. Published by Elsevier Inc.
DescripciónThis is an open access article under the CC BY-NC-ND licens (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Versión del editorhttp://dx.doi.org/10.1016/j.icarus.2022.115272
URIhttp://hdl.handle.net/10261/289544
DOI10.1016/j.icarus.2022.115272
ISSN0019-1035
E-ISSN1090-2643
Aparece en las colecciones: (IAA) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
2023Icar..38915272M.pdf4,9 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

4
checked on 01-may-2024

WEB OF SCIENCETM
Citations

2
checked on 20-feb-2024

Page view(s)

30
checked on 05-may-2024

Download(s)

21
checked on 05-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons